Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 15;25(24):5047–5051. doi: 10.1093/nar/25.24.5047

Reactivation of denatured proteins by domain V of bacterial 23S rRNA.

D Pal 1, S Chattopadhyay 1, S Chandra 1, D Sarkar 1, A Chakraborty 1, C Das Gupta 1
PMCID: PMC147138  PMID: 9396814

Abstract

In vitro transcripts containing domain V of the 23S rRNA of Escherichia coli and Bacillus subtilis can reactivate denatured proteins almost as efficiently as the total 23S rRNA. Here we show that almost the full length of domain V is required for reactivation of denatured pig muscle lactate dehydrogenase and pig heart cytoplasmic malate dehydrogenase: the central loop of this domain alone is not enough for this purpose. The antibiotic chloramphenicol, which binds to domain V of 23S rRNA, can inhibit reactivation of these proteins completely. Activity is eliminated by EDTA at a concentration of <1 mM, even in the presence of 4 mM MgCl2, suggesting that the three-dimensional conformation of the RNA should be maintained for this activity.

Full Text

The Full Text of this article is available as a PDF (91.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barta A., Steiner G., Brosius J., Noller H. F., Kuechler E. Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3607–3611. doi: 10.1073/pnas.81.12.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brosius J., Dull T. J., Noller H. F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):201–204. doi: 10.1073/pnas.77.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chattopadhyay S., Das B., Bera A. K., Dasgupta D., Dasgupta C. Refolding of denatured lactate dehydrogenase by Escherichia coli ribosomes. Biochem J. 1994 Jun 15;300(Pt 3):717–721. doi: 10.1042/bj3000717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chattopadhyay S., Das B., Dasgupta C. Reactivation of denatured proteins by 23S ribosomal RNA: role of domain V. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8284–8287. doi: 10.1073/pnas.93.16.8284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cline A. L., Bock R. M. Translational control of gene expression. Cold Spring Harb Symp Quant Biol. 1966;31:321–333. doi: 10.1101/sqb.1966.031.01.042. [DOI] [PubMed] [Google Scholar]
  6. Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  7. Das B., Chattopadhyay S., Bera A. K., Dasgupta C. In vitro protein folding by ribosomes from Escherichia coli, wheat germ and rat liver: the role of the 50S particle and its 23S rRNA. Eur J Biochem. 1996 Feb 1;235(3):613–621. doi: 10.1111/j.1432-1033.1996.00613.x. [DOI] [PubMed] [Google Scholar]
  8. Das B., Chattopadhyay S., Das Gupta C. Reactivation of denatured fungal glucose 6-phosphate dehydrogenase and E. coli alkaline phosphatase with E. coli ribosome. Biochem Biophys Res Commun. 1992 Mar 16;183(2):774–780. doi: 10.1016/0006-291x(92)90550-5. [DOI] [PubMed] [Google Scholar]
  9. Douthwaite S. Functional interactions within 23S rRNA involving the peptidyltransferase center. J Bacteriol. 1992 Feb;174(4):1333–1338. doi: 10.1128/jb.174.4.1333-1338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fedorov A. N., Baldwin T. O. Contribution of cotranslational folding to the rate of formation of native protein structure. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1227–1231. doi: 10.1073/pnas.92.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fedorov A. N., Friguet B., Djavadi-Ohaniance L., Alakhov Y. B., Goldberg M. E. Folding on the ribosome of Escherichia coli tryptophan synthase beta subunit nascent chains probed with a conformation-dependent monoclonal antibody. J Mol Biol. 1992 Nov 20;228(2):351–358. doi: 10.1016/0022-2836(92)90825-5. [DOI] [PubMed] [Google Scholar]
  12. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  13. Gutell R. R., Fox G. E. A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res. 1988;16 (Suppl):r175–r269. doi: 10.1093/nar/16.suppl.r175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kirsebom L. A., Svärd S. G. Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J. 1994 Oct 17;13(20):4870–4876. doi: 10.1002/j.1460-2075.1994.tb06814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kovalic D., Giannattasio R. B., Weisblum B. Methylation of minimalist 23S rRNA sequences in vitro by ErmSF (TlrA) N-methyltransferase. Biochemistry. 1995 Dec 5;34(48):15838–15844. doi: 10.1021/bi00048a029. [DOI] [PubMed] [Google Scholar]
  16. Kudlicki W., Chirgwin J., Kramer G., Hardesty B. Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome. Biochemistry. 1995 Nov 7;34(44):14284–14287. doi: 10.1021/bi00044a003. [DOI] [PubMed] [Google Scholar]
  17. Kudlicki W., Coffman A., Kramer G., Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101–108. doi: 10.1016/S1359-0278(97)00014-X. [DOI] [PubMed] [Google Scholar]
  18. Kudlicki W., Odom O. W., Kramer G., Hardesty B. Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. Analysis by fluorescence. J Mol Biol. 1994 Dec 2;244(3):319–331. doi: 10.1006/jmbi.1994.1732. [DOI] [PubMed] [Google Scholar]
  19. Liu F., Altman S. Differential evolution of substrates for an RNA enzyme in the presence and absence of its protein cofactor. Cell. 1994 Jul 1;77(7):1093–1100. doi: 10.1016/0092-8674(94)90448-0. [DOI] [PubMed] [Google Scholar]
  20. Lygerou Z., Mitchell P., Petfalski E., Séraphin B., Tollervey D. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 1994 Jun 15;8(12):1423–1433. doi: 10.1101/gad.8.12.1423. [DOI] [PubMed] [Google Scholar]
  21. Madhani H. D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell. 1992 Nov 27;71(5):803–817. doi: 10.1016/0092-8674(92)90556-r. [DOI] [PubMed] [Google Scholar]
  22. Moazed D., Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie. 1987 Aug;69(8):879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
  23. Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
  24. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  25. Morales M. J., Dang Y. L., Lou Y. C., Sulo P., Martin N. C. A 105-kDa protein is required for yeast mitochondrial RNase P activity. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9875–9879. doi: 10.1073/pnas.89.20.9875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
  27. Orgel L. E. RNA catalysis and the origins of life. J Theor Biol. 1986 Nov 21;123(2):127–149. doi: 10.1016/s0022-5193(86)80149-7. [DOI] [PubMed] [Google Scholar]
  28. Sigmund C. D., Ettayebi M., Morgan E. A. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 1984 Jun 11;12(11):4653–4663. doi: 10.1093/nar/12.11.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steiner G., Kuechler E., Barta A. Photo-affinity labelling at the peptidyl transferase centre reveals two different positions for the A- and P-sites in domain V of 23S rRNA. EMBO J. 1988 Dec 1;7(12):3949–3955. doi: 10.1002/j.1460-2075.1988.tb03281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Svärd S. G., Kagardt U., Kirsebom L. A. Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate. RNA. 1996 May;2(5):463–472. [PMC free article] [PubMed] [Google Scholar]
  31. Vazquez D. Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim Biophys Acta. 1966 Feb 21;114(2):277–288. doi: 10.1016/0005-2787(66)90309-1. [DOI] [PubMed] [Google Scholar]
  32. Vester B., Garrett R. A. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J. 1988 Nov;7(11):3577–3587. doi: 10.1002/j.1460-2075.1988.tb03235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Woese C. R., Magrum L. J., Gupta R., Siegel R. B., Stahl D. A., Kop J., Crawford N., Brosius J., Gutell R., Hogan J. J. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 1980 May 24;8(10):2275–2293. doi: 10.1093/nar/8.10.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zimmerly S., Drainas D., Sylvers L. A., Söll D. Identification of a 100-kDa protein associated with nuclear ribonuclease P activity in Schizosaccharomyces pombe. Eur J Biochem. 1993 Oct 15;217(2):501–507. doi: 10.1111/j.1432-1033.1993.tb18270.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES