Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 15;25(24):4907–4914. doi: 10.1093/nar/25.24.4907

Electric field directed nucleic acid hybridization on microchips.

C F Edman 1, D E Raymond 1, D J Wu 1, E Tu 1, R G Sosnowski 1, W F Butler 1, M Nerenberg 1, M J Heller 1
PMCID: PMC147163  PMID: 9396795

Abstract

Selection and adjustment of proper physical parameters enables rapid DNA transport, site selective concentration, and accelerated hybridization reactions to be carried out on active microelectronic arrays. These physical parameters include DC current, voltage, solution conductivity and buffer species. Generally, at any given current and voltage level, the transport or mobility of DNA is inversely proportional to electrolyte or buffer conductivity. However, only a subset of buffer species produce both rapid transport, site specific concentration and accelerated hybridization. These buffers include zwitterionic and low conductivity species such as: d- and l-histidine; 1- and 3-methylhistidines; carnosine; imidazole; pyridine; and collidine. In contrast, buffers such as glycine, beta-alanine and gamma-amino-butyric acid (GABA) produce rapid transport and site selective concentration but do not facilitate hybridization. Our results suggest that the ability of these buffers (histidine, etc.) to facilitate hybridization appears linked to their ability to provide electric field concentration of DNA; to buffer acidic conditions present at the anode; and in this process acquire a net positive charge which then shields or diminishes repulsion between the DNA strands, thus promoting hybridization.

Full Text

The Full Text of this article is available as a PDF (127.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bicher H. I., Oki S. Intracellular pH electrode. Experiments on the giant squid axon. Biochim Biophys Acta. 1972 Mar 17;255(3):900–904. doi: 10.1016/0005-2736(72)90401-4. [DOI] [PubMed] [Google Scholar]
  2. Chee M., Yang R., Hubbell E., Berno A., Huang X. C., Stern D., Winkler J., Lockhart D. J., Morris M. S., Fodor S. P. Accessing genetic information with high-density DNA arrays. Science. 1996 Oct 25;274(5287):610–614. doi: 10.1126/science.274.5287.610. [DOI] [PubMed] [Google Scholar]
  3. Eggers M., Ehrlich D. A review of microfabricated devices for gene-based diagnostics. Hematol Pathol. 1995;9(1):1–15. [PubMed] [Google Scholar]
  4. Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., Berg R. H., Kim S. K., Norden B., Nielsen P. E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993 Oct 7;365(6446):566–568. doi: 10.1038/365566a0. [DOI] [PubMed] [Google Scholar]
  5. Ferguson J. A., Boles T. C., Adams C. P., Walt D. R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol. 1996 Dec;14(13):1681–1684. doi: 10.1038/nbt1296-1681. [DOI] [PubMed] [Google Scholar]
  6. Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M., Horton H. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996 Dec;14(13):1675–1680. doi: 10.1038/nbt1296-1675. [DOI] [PubMed] [Google Scholar]
  7. Matsumura Y., Kajino K., Fujimoto M. Measurement of intracellular pH of bullfrog skeletal muscle and renal tubular cells with double-barreled antimony microelectrodes. Membr Biochem. 1980;3(1-2):99–129. doi: 10.3109/09687688009063880. [DOI] [PubMed] [Google Scholar]
  8. Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  9. Sosnowski R. G., Tu E., Butler W. F., O'Connell J. P., Heller M. J. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1119–1123. doi: 10.1073/pnas.94.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Weiler J., Hoheisel J. D. Combining the preparation of oligonucleotide arrays and synthesis of high-quality primers. Anal Biochem. 1996 Dec 15;243(2):218–227. doi: 10.1006/abio.1996.0509. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES