Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 15;25(24):4866–4871. doi: 10.1093/nar/25.24.4866

Template directed incorporation of nucleotide mixtures using azole-nucleobase analogs.

G C Hoops 1, P Zhang 1, W T Johnson 1, N Paul 1, D E Bergstrom 1, V J Davisson 1
PMCID: PMC147165  PMID: 9396789

Abstract

DNA that encodes elements for degenerate replication events by use of artificial nucleobases offers a versatile approach to manipulating sequences for applications in biotechnology. We have designed a family of artificial nucleobases that are capable of assuming multiple hydrogen bonding orientations through internal bond rotations to provide a means for degenerate molecular recognition. Incorporation of these analogs into a single position of a PCR primer allowed for analysis of their template effects on DNA amplification catalyzed by Thermus aquaticus (Taq) DNA polymerase. All of the nucleobase surrogates have similar shapes but differ by structural alterations that influence their electronic character. These subtle distinctions were able to influence the Taq DNA polymerase dependent incorporation of the four natural deoxyribonucleotides and thus, significantly expand the molecular design possibilities for biochemically functional nucleic acid analogs.

Full Text

The Full Text of this article is available as a PDF (123.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. M., Lin P. K. Synthesis and duplex stability of oligonucleotides containing adenine-guanine analogues. Carbohydr Res. 1991 Sep 2;216:129–139. doi: 10.1016/0008-6215(92)84156-m. [DOI] [PubMed] [Google Scholar]
  2. Cai H., Bloom L. B., Eritja R., Goodman M. F. Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J Biol Chem. 1993 Nov 5;268(31):23567–23572. [PubMed] [Google Scholar]
  3. Case-Green S. C., Southern E. M. Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Res. 1994 Jan 25;22(2):131–136. doi: 10.1093/nar/22.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Z., Ruffner D. E. Modified crush-and-soak method for recovering oligodeoxynucleotides from polyacrylamide gel. Biotechniques. 1996 Nov;21(5):820–822. doi: 10.2144/96215bm14. [DOI] [PubMed] [Google Scholar]
  5. Eckert K. A., Kunkel T. A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Jul 11;18(13):3739–3744. doi: 10.1093/nar/18.13.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eritja R., Horowitz D. M., Walker P. A., Ziehler-Martin J. P., Boosalis M. S., Goodman M. F., Itakura K., Kaplan B. E. Synthesis and properties of oligonucleotides containing 2'-deoxynebularine and 2'-deoxyxanthosine. Nucleic Acids Res. 1986 Oct 24;14(20):8135–8153. doi: 10.1093/nar/14.20.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grevatt P. C., Solomon J. J., Bhanot O. S. In vitro mispairing specificity of O2-ethylthymidine. Biochemistry. 1992 May 5;31(17):4181–4188. doi: 10.1021/bi00132a005. [DOI] [PubMed] [Google Scholar]
  8. Horlacher J., Hottiger M., Podust V. N., Hübscher U., Benner S. A. Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6329–6333. doi: 10.1073/pnas.92.14.6329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson W. T., Zhang P., Bergstrom D. E. The synthesis and stability of oligodeoxyribonucleotides containing the deoxyadenosine mimic 1-(2'-deoxy-beta-D-ribofuranosyl)imidazole-4-carboxamide. Nucleic Acids Res. 1997 Feb 1;25(3):559–567. doi: 10.1093/nar/25.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kamiya H., Murata-Kamiya N., Fujimuro M., Kido K., Inoue H., Nishimura S., Masutani C., Hanaoka F., Ohtsuka E. Comparison of incorporation and extension of nucleotides in vitro opposite 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene. Jpn J Cancer Res. 1995 Mar;86(3):270–276. doi: 10.1111/j.1349-7006.1995.tb03050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kamiya H., Sakaguchi T., Murata N., Fujimuro M., Miura H., Ishikawa H., Shimizu M., Inoue H., Nishimura S., Matsukage A. In vitro replication study of modified bases in ras sequences. Chem Pharm Bull (Tokyo) 1992 Oct;40(10):2792–2795. doi: 10.1248/cpb.40.2792. [DOI] [PubMed] [Google Scholar]
  12. Kamiya H., Ueda T., Ohgi T., Matsukage A., Kasai H. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res. 1995 Mar 11;23(5):761–766. doi: 10.1093/nar/23.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kawase Y., Iwai S., Inoue H., Miura K., Ohtsuka E. Studies on nucleic acid interactions. I. Stabilities of mini-duplexes (dG2A4XA4G2-dC2T4YT4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases. Nucleic Acids Res. 1986 Oct 10;14(19):7727–7736. doi: 10.1093/nar/14.19.7727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klem T. J., Davisson V. J. Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis. Biochemistry. 1993 May 18;32(19):5177–5186. doi: 10.1021/bi00070a029. [DOI] [PubMed] [Google Scholar]
  15. Lawyer F. C., Stoffel S., Saiki R. K., Myambo K., Drummond R., Gelfand D. H. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989 Apr 15;264(11):6427–6437. [PubMed] [Google Scholar]
  16. Lin P. K., Brown D. M. Synthesis and duplex stability of oligonucleotides containing cytosine-thymine analogues. Nucleic Acids Res. 1989 Dec 25;17(24):10373–10383. doi: 10.1093/nar/17.24.10373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin F. H., Castro M. M., Aboul-ela F., Tinoco I., Jr Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res. 1985 Dec 20;13(24):8927–8938. doi: 10.1093/nar/13.24.8927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishio H., Ono A., Matsuda A., Ueda T. The synthesis and properties of oligodeoxyribonucleotides containing N6-methoxyadenine. Nucleic Acids Res. 1992 Feb 25;20(4):777–782. doi: 10.1093/nar/20.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem. 1985 Mar 10;260(5):2605–2608. [PubMed] [Google Scholar]
  20. Sala M., Pezo V., Pochet S., Wain-Hobson S. Ambiguous base pairing of the purine analogue 1-(2-deoxy-beta-D-ribofuranosyl)-imidazole-4-carboxamide during PCR. Nucleic Acids Res. 1996 Sep 1;24(17):3302–3306. doi: 10.1093/nar/24.17.3302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singer B., Chavez F., Goodman M. F., Essigmann J. M., Dosanjh M. K. Effect of 3' flanking neighbors on kinetics of pairing of dCTP or dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Escherichia coli DNA polymerase I is used. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8271–8274. doi: 10.1073/pnas.86.21.8271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strauss B. S. The 'A rule' of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions? Bioessays. 1991 Feb;13(2):79–84. doi: 10.1002/bies.950130206. [DOI] [PubMed] [Google Scholar]
  23. Tindall K. R., Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. doi: 10.1021/bi00416a027. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES