Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 1;26(1):280–284. doi: 10.1093/nar/26.1.280

Expanded versions of the 16S and 23S ribosomal RNA mutation databases (16SMDBexp and 23SMDBexp)

K L Triman 1, A Peister 1, R A Goel 1
PMCID: PMC147214  PMID: 9399853

Abstract

Expanded versions of the Ribosomal RNA Mutation Databases provide lists of mutated positions in 16S and 16S-like ribosomal RNA (16SMDBexp) and 23S and 23S-like ribosomal RNA (23SMDBexp) and the identity of each alteration. Alterations from organisms other than Escherichia coli are reported at positions according to the E.coli numbering system. Information provided for each mutation includes: (i) a brief description of the phenotype(s) associated with each mutation, (ii) whether a mutant phenotype has been detected by in vivo or in vitro methods, and (iii) relevant literature citations. The databases are available via ftp and on the World Wide Web at the following URL: http: //www.fandm.edu/Departments/Biology/Databases/RNA.h tml

Full Text

The Full Text of this article is available as a PDF (50.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batey R. T., Williamson J. R. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA: II. Specificity determinants of RNA-protein recognition. J Mol Biol. 1996 Aug 30;261(4):550–567. doi: 10.1006/jmbi.1996.0482. [DOI] [PubMed] [Google Scholar]
  2. Blanc H., Wright C. T., Bibb M. J., Wallace D. C., Clayton D. A. Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3' end of the large ribosomal RNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3789–3793. doi: 10.1073/pnas.78.6.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chernoff Y. O., Vincent A., Liebman S. W. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J. 1994 Feb 15;13(4):906–913. doi: 10.1002/j.1460-2075.1994.tb06334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dragon F., Spickler C., Pinard R., Carrière J., Brakier-Gringas L. Mutations of non-canonical base-pairs in the 3' major domain of Escherichia coli 16 S ribosomal RNA affect the initiation and elongation of protein synthesis. J Mol Biol. 1996 Jun 7;259(2):207–215. doi: 10.1006/jmbi.1996.0313. [DOI] [PubMed] [Google Scholar]
  5. Green R., Samaha R. R., Noller H. F. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol. 1997 Feb 14;266(1):40–50. doi: 10.1006/jmbi.1996.0780. [DOI] [PubMed] [Google Scholar]
  6. Harris E. H., Burkhart B. D., Gillham N. W., Boynton J. E. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics. 1989 Oct;123(2):281–292. doi: 10.1093/genetics/123.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kavanagh T. A., O'Driscoll K. M., McCabe P. F., Dix P. J. Mutations conferring lincomycin, spectinomycin, and streptomycin resistance in Solanum nigrum are located in three different chloroplast genes. Mol Gen Genet. 1994 Mar;242(6):675–680. doi: 10.1007/BF00283422. [DOI] [PubMed] [Google Scholar]
  8. Lee K., Varma S., SantaLucia J., Jr, Cunningham P. R. In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA. J Mol Biol. 1997 Jun 27;269(5):732–743. doi: 10.1006/jmbi.1997.1092. [DOI] [PubMed] [Google Scholar]
  9. Leviev I. G., Rodriguez-Fonseca C., Phan H., Garrett R. A., Heilek G., Noller H. F., Mankin A. S. A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation. EMBO J. 1994 Apr 1;13(7):1682–1686. doi: 10.1002/j.1460-2075.1994.tb06432.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lodmell J. S., Dahlberg A. E. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science. 1997 Aug 29;277(5330):1262–1267. doi: 10.1126/science.277.5330.1262. [DOI] [PubMed] [Google Scholar]
  11. Mankin A. S., Garrett R. A. Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium. J Bacteriol. 1991 Jun;173(11):3559–3563. doi: 10.1128/jb.173.11.3559-3563.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miyaguchi H., Narita H., Sakamoto K., Yokoyama S. An antibiotic-binding motif of an RNA fragment derived from the A-site-related region of Escherichia coli 16S rRNA. Nucleic Acids Res. 1996 Oct 1;24(19):3700–3706. doi: 10.1093/nar/24.19.3700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moine H., Cachia C., Westhof E., Ehresmann B., Ehresmann C. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies. RNA. 1997 Mar;3(3):255–268. [PMC free article] [PubMed] [Google Scholar]
  14. O'Connor M., Thomas C. L., Zimmermann R. A., Dahlberg A. E. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res. 1997 Mar 15;25(6):1185–1193. doi: 10.1093/nar/25.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pagel F. T., Zhao S. Q., Hijazi K. A., Murgola E. J. Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16 S ribosomal RNA. J Mol Biol. 1997 Apr 18;267(5):1113–1123. doi: 10.1006/jmbi.1997.0943. [DOI] [PubMed] [Google Scholar]
  16. Poot R. A., Jeeninga R. E., Pleij C. W., van Duin J. Acetylation of ribosomal protein S5 affected by defects in the central pseudoknot in 16S ribosomal RNA? FEBS Lett. 1997 Jan 20;401(2-3):175–179. doi: 10.1016/s0014-5793(96)01467-6. [DOI] [PubMed] [Google Scholar]
  17. Poot R. A., Pleij C. W., van Duin J. The central pseudoknot in 16S ribosomal RNA is needed for ribosome stability but is not essential for 30S initiation complex formation. Nucleic Acids Res. 1996 Oct 1;24(19):3670–3676. doi: 10.1093/nar/24.19.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Porse B. T., Garrett R. A. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach. J Mol Biol. 1995 May 26;249(1):1–10. doi: 10.1006/jmbi.1995.0276. [DOI] [PubMed] [Google Scholar]
  19. Porse B. T., Thi-Ngoc H. P., Garrett R. A. The donor substrate site within the peptidyl transferase loop of 23 S rRNA and its putative interactions with the CCA-end of N-blocked aminoacyl-tRNA(Phe). J Mol Biol. 1996 Dec 6;264(3):472–483. doi: 10.1006/jmbi.1996.0655. [DOI] [PubMed] [Google Scholar]
  20. Sander P., Prammananan T., Böttger E. C. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol Microbiol. 1996 Dec;22(5):841–848. doi: 10.1046/j.1365-2958.1996.01532.x. [DOI] [PubMed] [Google Scholar]
  21. Spahn C. M., Remme J., Schäfer M. A., Nierhaus K. H. Mutational analysis of two highly conserved UGG sequences of 23 S rRNA from Escherichia coli. J Biol Chem. 1996 Dec 20;271(51):32849–32856. doi: 10.1074/jbc.271.51.32849. [DOI] [PubMed] [Google Scholar]
  22. Spahn C. M., Schäfer M. A., Krayevsky A. A., Nierhaus K. H. Conserved nucleotides of 23 S rRNA located at the ribosomal peptidyltransferase center. J Biol Chem. 1996 Dec 20;271(51):32857–32862. doi: 10.1074/jbc.271.51.32857. [DOI] [PubMed] [Google Scholar]
  23. Spangler E. A., Blackburn E. H. The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. J Biol Chem. 1985 May 25;260(10):6334–6340. [PubMed] [Google Scholar]
  24. Svab Z., Maliga P. Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet. 1991 Aug;228(1-2):316–319. doi: 10.1007/BF00282483. [DOI] [PubMed] [Google Scholar]
  25. Sweeney R., Yao C. H., Yao M. C. A mutation in the large subunit ribosomal RNA gene of Tetrahymena confers anisomycin resistance and cold sensitivity. Genetics. 1991 Feb;127(2):327–334. doi: 10.1093/genetics/127.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tan G. T., DeBlasio A., Mankin A. S. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. J Mol Biol. 1996 Aug 16;261(2):222–230. doi: 10.1006/jmbi.1996.0454. [DOI] [PubMed] [Google Scholar]
  27. Triman K. L., Adams B. J. Expansion of the 16S and 23S ribosomal RNA mutation databases (16SMDB and 23SMDB). Nucleic Acids Res. 1997 Jan 1;25(1):188–191. doi: 10.1093/nar/25.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Triman K. L. Mutational analysis of 16S ribosomal RNA structure and function in Escherichia coli. Adv Genet. 1995;33:1–39. doi: 10.1016/s0065-2660(08)60329-6. [DOI] [PubMed] [Google Scholar]
  29. Triman K. L. The 16S ribosomal RNA mutation database (16SMDB). Nucleic Acids Res. 1996 Jan 1;24(1):166–168. doi: 10.1093/nar/24.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Triman K. L. The 16S ribosomal RNA mutation database (16SMDB) Nucleic Acids Res. 1994 Sep;22(17):3563–3565. [PMC free article] [PubMed] [Google Scholar]
  31. Triman K. L. The 23S Ribosomal RNA Mutation Database (23SMDB). Nucleic Acids Res. 1996 Jan 1;24(1):169–171. doi: 10.1093/nar/24.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Versalovic J., Shortridge D., Kibler K., Griffy M. V., Beyer J., Flamm R. K., Tanaka S. K., Graham D. Y., Go M. F. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother. 1996 Feb;40(2):477–480. doi: 10.1128/aac.40.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vester B., Garrett R. A. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J. 1988 Nov;7(11):3577–3587. doi: 10.1002/j.1460-2075.1988.tb03235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xu W., Murgola E. J. Functional effects of mutating the closing GxA base-pair of a conserved hairpin loop in 23 S ribosomal RNA. J Mol Biol. 1996 Dec 6;264(3):407–411. doi: 10.1006/jmbi.1996.0649. [DOI] [PubMed] [Google Scholar]
  35. Yeh K. C., To K. Y., Sun S. W., Wu M. C., Lin T. Y., Chen C. C. Point mutations in the chloroplast 16s rRNA gene confer streptomycin resistance in Nicotiana plumbaginifolia. Curr Genet. 1994 Aug;26(2):132–135. doi: 10.1007/BF00313800. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES