Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 1;26(1):248–252. doi: 10.1093/nar/26.1.248

LDLR Database (second edition): new additions to the database and the software, and results of the first molecular analysis.

M Varret 1, J P Rabés 1, R Thiart 1, M J Kotze 1, H Baron 1, A Cenarro 1, O Descamps 1, M Ebhardt 1, J C Hondelijn 1, G M Kostner 1, Y Miyake 1, M Pocovi 1, H Schmidt 1, H Schuster 1, M Stuhrmann 1, T Yamamura 1, C Junien 1, C Béroud 1, C Boileau 1
PMCID: PMC147253  PMID: 9399845

Abstract

Mutations in the LDL receptor gene (LDLR) cause familial hypercholesterolemia (FH), a common autosomal dominant disorder. The LDLR database is a computerized tool that has been developed to provide tools to analyse the numerous mutations that have been identified in the LDLR gene. The second version of the LDLR database contains 140 new entries and the software has been modified to accommodate four new routines. The analysis of the updated data (350 mutations) gives the following informations: (i) 63% of the mutations are missense, and only 20% occur in CpG dinucleotides; (ii) although the mutations are widely distributed throughout the gene, there is an excess of mutations in exons 4 and 9, and a deficit in exons 13 and 15; (iii) the analysis of the distribution of mutations located within the ligand-binding domain shows that 74% of the mutations in this domain affect a conserved amino-acid, and that they are mostly confined in the C-terminal region of the repeats. Conversely, the same analysis in the EGF-like domain shows that 64% of the mutations in this domain affect a non-conserved amino-acid, and, that they are mostly confined in the N-terminal half of the repeats. The database is now accessible on the World Wide Web at http://www.umd.necker.fr

Full Text

The Full Text of this article is available as a PDF (297.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assouline L., Leitersdorf E., Lambert M., Reshef A., Feoli-Fonseca J. C., Levy E. Identification of two novel LDL receptor gene defects in French-Canadian pediatric population: mutational analysis and biochemical studies. Hum Mutat. 1997;9(6):555–562. doi: 10.1002/(SICI)1098-1004(1997)9:6<555::AID-HUMU9>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  2. Beaudet A. L., Tsui L. C. A suggested nomenclature for designating mutations. Hum Mutat. 1993;2(4):245–248. doi: 10.1002/humu.1380020402. [DOI] [PubMed] [Google Scholar]
  3. Cenarro A., Jensen H. K., Civeira F., Casao E., Ferrando J., González-Bonillo J., Pocoví M., Gregersen N. Two novel mutations in the LDL receptor gene: common causes of familial hypercholesterolemia in a Spanish population. Clin Genet. 1996 Apr;49(4):180–185. doi: 10.1111/j.1399-0004.1996.tb03283.x. [DOI] [PubMed] [Google Scholar]
  4. Cooper D. N., Krawczak M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet. 1990 Jun;85(1):55–74. doi: 10.1007/BF00276326. [DOI] [PubMed] [Google Scholar]
  5. Day I. N., Haddad L., O'Dell S. D., Day L. B., Whittall R. A., Humphries S. E. Identification of a common low density lipoprotein receptor mutation (R329X) in the south of England: complete linkage disequilibrium with an allele of microsatellite D19S394. J Med Genet. 1997 Feb;34(2):111–116. doi: 10.1136/jmg.34.2.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Day I. N., Whittall R. A., O'Dell S. D., Haddad L., Bolla M. K., Gudnason V., Humphries S. E. Spectrum of LDL receptor gene mutations in heterozygous familial hypercholesterolemia. Hum Mutat. 1997;10(2):116–127. doi: 10.1002/(SICI)1098-1004(1997)10:2<116::AID-HUMU4>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  7. Defesche J. C., van de Ree M. A., Kastelein J. J., van Diermen D. E., Janssens N. W., van Doormaal J. J., Hayden M. R. Detection of the Pro664-Leu mutation in the low-density lipoprotein receptor and its relation to lipoprotein(a) levels in patients with familial hypercholesterolemia of Dutch ancestry from The Netherlands and Canada. Clin Genet. 1992 Dec;42(6):273–280. [PubMed] [Google Scholar]
  8. Descamps O., Hondekijn J. C., Van Acker P., Deslypere J. P., Heller F. R. High prevalence of a novel mutation in the exon 4 of the low-density lipoprotein receptor gene causing familial hypercholesterolemia in Belgium. Clin Genet. 1997 May;51(5):303–308. doi: 10.1111/j.1399-0004.1997.tb02478.x. [DOI] [PubMed] [Google Scholar]
  9. Ekström U., Abrahamson M., Sveger T., Lombardi P., Nilsson-Ehle P. An efficient screening procedure detecting six novel mutations in the LDL receptor gene in Swedish children with hypercholesterolemia. Hum Genet. 1995 Aug;96(2):147–150. doi: 10.1007/BF00207370. [DOI] [PubMed] [Google Scholar]
  10. Giesel J., Holzem G., Oette K. Screening for mutations in exon 4 of the LDL receptor gene in a German population with severe hypercholesterolemia. Hum Genet. 1995 Sep;96(3):301–304. doi: 10.1007/BF00210411. [DOI] [PubMed] [Google Scholar]
  11. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  12. Hobbs H. H., Brown M. S., Goldstein J. L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1(6):445–466. doi: 10.1002/humu.1380010602. [DOI] [PubMed] [Google Scholar]
  13. Jensen H. K., Holst H., Jensen L. G., Jørgensen M. M., Andreasen P. H., Jensen T. G., Andresen B. S., Heath F., Hansen P. S., Neve S. A common W556S mutation in the LDL receptor gene of Danish patients with familial hypercholesterolemia encodes a transport-defective protein. Atherosclerosis. 1997 May;131(1):67–72. doi: 10.1016/s0021-9150(96)06059-5. [DOI] [PubMed] [Google Scholar]
  14. Jensen H. K., Jensen L. G., Hansen P. S., Faergeman O., Gregersen N. High sensitivity of the single-strand conformation polymorphism method for detecting sequence variations in the low-density lipoprotein receptor gene validated by DNA sequencing. Clin Chem. 1996 Aug;42(8 Pt 1):1140–1146. [PubMed] [Google Scholar]
  15. Jensen H. K., Jensen T. G., Faergeman O., Jensen L. G., Andresen B. S., Corydon M. J., Andreasen P. H., Hansen P. S., Heath F., Bolund L. Two mutations in the same low-density lipoprotein receptor allele act in synergy to reduce receptor function in heterozygous familial hypercholesterolemia. Hum Mutat. 1997;9(5):437–444. doi: 10.1002/(SICI)1098-1004(1997)9:5<437::AID-HUMU10>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  16. Koivisto U. M., Gylling H., Miettinen T. A., Kontula K. Familial moderate hypercholesterolemia caused by Asp235-->Glu mutation of the LDL receptor gene and co-occurrence of a de novo deletion of the LDL receptor gene in the same family. Arterioscler Thromb Vasc Biol. 1997 Jul;17(7):1392–1399. doi: 10.1161/01.atv.17.7.1392. [DOI] [PubMed] [Google Scholar]
  17. Kotze M. J., Loubser O., Thiart R., de Villiers J. N., Langenhoven E., Theart L., Steyn K., Marais A. D., Raal F. J. CpG hotspot mutations at the LDL receptor locus are a frequent cause of familial hypercholesterolaemia among South African Indians. Clin Genet. 1997 Jun;51(6):394–398. doi: 10.1111/j.1399-0004.1997.tb02497.x. [DOI] [PubMed] [Google Scholar]
  18. Kotze M. J., Thiart R., Loubser O., de Villiers J. N., Santos M., Vargas M. A., Peeters A. V. Mutation analysis reveals an insertional hotspot in exon 4 of the LDL receptor gene. Hum Genet. 1996 Oct;98(4):476–478. doi: 10.1007/s004390050242. [DOI] [PubMed] [Google Scholar]
  19. Kotze M. J., de Villiers J. N., Loubser O., Thiart R., Scholtz C. L., Raal F. J. A double mutant LDL receptor allele in a cypriot family with heterozygous familial hypercholesterolemia. Hum Genet. 1997 Jul;100(1):101–103. doi: 10.1007/s004390050473. [DOI] [PubMed] [Google Scholar]
  20. Langenhoven E., Warnich L., Thiart R., Rubinsztein D. C., van der Westhuyzen D. R., Marais A. D., Kotze M. J. Two novel point mutations causing receptor-negative familial hypercholesterolemia in a South African Indian homozygote. Atherosclerosis. 1996 Aug 23;125(1):111–119. doi: 10.1016/0021-9150(96)05871-6. [DOI] [PubMed] [Google Scholar]
  21. Leren T. P., Tonstad S., Gundersen K. E., Bakken K. S., Rødningen O. K., Sundvold H., Ose L., Berg K. Molecular genetics of familial hypercholesterolaemia in Norway. J Intern Med. 1997 Mar;241(3):185–194. doi: 10.1046/j.1365-2796.1997.78119000.x. [DOI] [PubMed] [Google Scholar]
  22. Lindgren V., Luskey K. L., Russell D. W., Francke U. Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8567–8571. doi: 10.1073/pnas.82.24.8567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lombardi P., Defesche J. C., Kamerling S. W., Kastelein J. J., Havekes L. M. A novel V415A mutation in exon 9 of the low density lipoprotein receptor gene causing familial hypercholesterolemia. Clin Genet. 1997 Apr;51(4):286–287. doi: 10.1111/j.1399-0004.1997.tb02473.x. [DOI] [PubMed] [Google Scholar]
  24. Lombardi P., Kamerling S. W., Defesche J. C., Kastelein J. J., Havekes L. M. Identification of a double mutation in the low-density lipoprotein receptor gene causing familial hypercholesterolemia. Clin Genet. 1996 Dec;50(6):525–526. doi: 10.1111/j.1399-0004.1996.tb02727.x. [DOI] [PubMed] [Google Scholar]
  25. Mavroidis N., Traeger-Synodinos J., Kanavakis E., Drogari E., Matsaniotis N., Humphries S. E., Day I. N., Kattamis C. A high incidence of mutations in exon 6 of the low-density lipoprotein receptor gene in Greek familial hypercholesterolemia patients, including a novel mutation. Hum Mutat. 1997;9(3):274–276. doi: 10.1002/(SICI)1098-1004(1997)9:3<274::AID-HUMU10>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  26. Mehta K. D., Chen W. J., Goldstein J. L., Brown M. S. The low density lipoprotein receptor in Xenopus laevis. I. Five domains that resemble the human receptor. J Biol Chem. 1991 Jun 5;266(16):10406–10414. [PubMed] [Google Scholar]
  27. Reshef A., Nissen H., Triger L., Hensen T. S., Eliav O., Schurr D., Safadi R., Gare M., Leitersdorf E. Molecular genetics of familial hypercholesterolemia in Israel. Hum Genet. 1996 Nov;98(5):581–586. doi: 10.1007/s004390050263. [DOI] [PubMed] [Google Scholar]
  28. Schuster H., Keller C., Wolfram G., Zöllner N. Ten LDL receptor mutants explain one third of familial hypercholesterolemia in a German sample. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2176–2180. doi: 10.1161/01.atv.15.12.2176. [DOI] [PubMed] [Google Scholar]
  29. Schuster H., Manke C., Fischer J., Keller C., Wolfram G., Zöllner N. Identification of the valine 408 to methionine mutation in the LDL receptor in a Greek patient with homozygous familial hypercholesterolemia. Clin Genet. 1995 Aug;48(2):90–92. doi: 10.1111/j.1399-0004.1995.tb04062.x. [DOI] [PubMed] [Google Scholar]
  30. Südhof T. C., Russell D. W., Goldstein J. L., Brown M. S., Sanchez-Pescador R., Bell G. I. Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 May 17;228(4701):893–895. doi: 10.1126/science.3873704. [DOI] [PubMed] [Google Scholar]
  31. Varret M., Rabès J. P., Collod-Béroud G., Junien C., Boileau C., Béroud C. Software and database for the analysis of mutations in the human LDL receptor gene. Nucleic Acids Res. 1997 Jan 1;25(1):172–180. doi: 10.1093/nar/25.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vuorio A. F., Turtola H., Kontula K. A novel point mutation (Pro84-->Ser) of the low density lipoprotein receptor gene in a family with moderate hypercholesterolemia. Clin Genet. 1997 Mar;51(3):191–195. doi: 10.1111/j.1399-0004.1997.tb02451.x. [DOI] [PubMed] [Google Scholar]
  33. Yamakawa-Kobayashi K., Kobayashi T., Yanagi H., Shimakura Y., Satoh J., Hamaguchi H. A novel complex mutation in the LDL receptor gene probably caused by the simultaneous occurrence of deletion and insertion in the same region. Hum Genet. 1994 Jun;93(6):625–628. doi: 10.1007/BF00201560. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto T., Davis C. G., Brown M. S., Schneider W. J., Casey M. L., Goldstein J. L., Russell D. W. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov;39(1):27–38. doi: 10.1016/0092-8674(84)90188-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES