Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):415–419. doi: 10.1093/nar/26.2.415

Nuclear encoding of a plastid sigma factor in rice and its tissue- and light-dependent expression.

Y Tozawa 1, K Tanaka 1, H Takahashi 1, K Wakasa 1
PMCID: PMC147261  PMID: 9421493

Abstract

A full-length cDNA encoding a putative sigma factor for a plastid RNA polymerase was isolated from the higher plant Oryza sativa . The nucleotide sequence of the corresponding nuclear gene, named Os-sigA ( O.sativa sigma A), predicts a polypeptide of 519 amino acids that contains a putative plastid-targeting sequence in its N-terminal region. The predicted mature protein shows extensive sequence homology to bacterial sigma factors, encompassing the conserved regions 1.2, 2.1, 2.2, 2.3, 2.4, 3, 4.1 and 4.2 implicated in binding to -10 promoter elements, promoter melting and interaction with the core RNA polymerase enzyme. RNA blot analysis revealed that the abundance of Os-sigA transcripts was markedly greater in green shoots than in roots or in dark-grown etiolated shoots of rice seedlings. Furthermore, exposure of dark-grown etiolated seedlings to light resulted in a rapid increase in the amount of Os-sigA mRNA in the shoot. These observations suggest that regulation of expression of the nuclear gene for this putative plastid RNA polymerase sigmafactor by light contributes to light-dependent transcriptional regulation of plastid genes.

Full Text

The Full Text of this article is available as a PDF (103.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison L. A., Simon L. D., Maliga P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 1996 Jun 3;15(11):2802–2809. [PMC free article] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  4. Helmann J. D., Chamberlin M. J. Structure and function of bacterial sigma factors. Annu Rev Biochem. 1988;57:839–872. doi: 10.1146/annurev.bi.57.070188.004203. [DOI] [PubMed] [Google Scholar]
  5. Hess W. R., Prombona A., Fieder B., Subramanian A. R., Börner T. Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J. 1993 Feb;12(2):563–571. doi: 10.1002/j.1460-2075.1993.tb05688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  7. Hu J., Bogorad L. Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1531–1535. doi: 10.1073/pnas.87.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hu J., Troxler R. F., Bogorad L. Maize chloroplast RNA polymerase: the 78-kilodalton polypeptide is encoded by the plastid rpoC1 gene. Nucleic Acids Res. 1991 Jun 25;19(12):3431–3434. doi: 10.1093/nar/19.12.3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapoor S., Suzuki J. Y., Sugiura M. Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J. 1997 Feb;11(2):327–337. doi: 10.1046/j.1365-313x.1997.11020327.x. [DOI] [PubMed] [Google Scholar]
  10. Karlin S., Altschul S. F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2264–2268. doi: 10.1073/pnas.87.6.2264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lerbs-Mache S. The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5509–5513. doi: 10.1073/pnas.90.12.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu B., Troxler R. F. Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase sigma factor in Cyanidium caldarium. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3313–3318. doi: 10.1073/pnas.93.8.3313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Losick R., Pero J. Cascades of Sigma factors. Cell. 1981 Sep;25(3):582–584. doi: 10.1016/0092-8674(81)90164-1. [DOI] [PubMed] [Google Scholar]
  15. Maier R. M., Neckermann K., Igloi G. L., Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995 Sep 1;251(5):614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
  16. Malhotra A., Severinova E., Darst S. A. Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell. 1996 Oct 4;87(1):127–136. doi: 10.1016/s0092-8674(00)81329-x. [DOI] [PubMed] [Google Scholar]
  17. Mathews D. E., Durbin R. D. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J Biol Chem. 1990 Jan 5;265(1):493–498. [PubMed] [Google Scholar]
  18. Mullet J. E. Dynamic regulation of chloroplast transcription. Plant Physiol. 1993 Oct;103(2):309–313. doi: 10.1104/pp.103.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reece K. S., McElroy D., Wu R. Genomic nucleotide sequence of four rice (Oryza sativa) actin genes. Plant Mol Biol. 1990 Apr;14(4):621–624. doi: 10.1007/BF00027508. [DOI] [PubMed] [Google Scholar]
  21. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  22. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Silverthorne J., Tobin E. M. Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1112–1116. doi: 10.1073/pnas.81.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sugiura M. The chloroplast genome. Plant Mol Biol. 1992 May;19(1):149–168. doi: 10.1007/BF00015612. [DOI] [PubMed] [Google Scholar]
  25. Tanaka K., Masuda S., Takahashi H. The complete nucleotide sequence of the gene (rpoD1) encoding the principal sigma factor of the RNA polymerase from the cyanobacterium Synechococcus sp. strain PCC7942. Biochim Biophys Acta. 1992 Aug 17;1132(1):94–96. doi: 10.1016/0167-4781(92)90060-d. [DOI] [PubMed] [Google Scholar]
  26. Tanaka K., Oikawa K., Ohta N., Kuroiwa H., Kuroiwa T., Takahashi H. Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science. 1996 Jun 28;272(5270):1932–1935. doi: 10.1126/science.272.5270.1932. [DOI] [PubMed] [Google Scholar]
  27. Tanaka K., Shiina T., Takahashi H. Multiple principal sigma factor homologs in eubacteria: identification of the "rpoD box". Science. 1988 Nov 18;242(4881):1040–1042. doi: 10.1126/science.3194753. [DOI] [PubMed] [Google Scholar]
  28. Tanaka K., Tozawa Y., Mochizuki N., Shinozaki K., Nagatani A., Wakasa K., Takahashi H. Characterization of three cDNA species encoding plastid RNA polymerase sigma factors in Arabidopsis thaliana: evidence for the sigma factor heterogeneity in higher plant plastids. FEBS Lett. 1997 Aug 18;413(2):309–313. doi: 10.1016/s0014-5793(97)00906-x. [DOI] [PubMed] [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tiller K., Link G. Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba L.). EMBO J. 1993 May;12(5):1745–1753. doi: 10.1002/j.1460-2075.1993.tb05822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tiller K., Link G. Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol Biol. 1993 Feb;21(3):503–513. doi: 10.1007/BF00028807. [DOI] [PubMed] [Google Scholar]
  32. Troxler R. F., Zhang F., Hu J., Bogorad L. Evidence that sigma factors are components of chloroplast RNA polymerase. Plant Physiol. 1994 Feb;104(2):753–759. doi: 10.1104/pp.104.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T., Sugiura M. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9794–9798. doi: 10.1073/pnas.91.21.9794. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES