Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):650–654. doi: 10.1093/nar/26.2.650

Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay.

E N Zaitsev 1, S C Kowalczykowski 1
PMCID: PMC147265  PMID: 9421529

Abstract

We have developed a new assay to characterize the double-stranded DNA (dsDNA) binding properties of RecA protein. This assay is based on measurement of changes in the fluorescence of a 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complex upon RecA protein binding. The binding of RecA protein to a complex of DAPI and dsDNA results in displacement of the bound DAPI, producing a decrease in the observed fluorescence. DAPI displacement is dependent on both RecA protein and ATP; dATP and, to a lesser extent, UTP and dCTP also support the DAPI displacement reaction, but dGTP, GTP, dITP and TTP do not. Binding stoichiometry for the RecA protein-dsDNA complex measured by DAPI displacement is 3 bp per RecA protein monomer in the presence of ATP. These results, taken together with data for mutant RecA proteins, suggest that this DAPI displacement assay monitors formation of the high affinity DNA binding state of RecA protein. Since this state of RecA protein defines the form of the nucleoprotein filament that is active in DNA strand exchange, these findings raise the possibility that the RecA protein-dsDNA filament may possess a homologous pairing capacity.

Full Text

The Full Text of this article is available as a PDF (76.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedict R. C., Kowalczykowski S. C. Increase of the DNA strand assimilation activity of recA protein by removal of the C terminus and structure-function studies of the resulting protein fragment. J Biol Chem. 1988 Oct 25;263(30):15513–15520. [PubMed] [Google Scholar]
  2. Chabbert M., Lami H., Takahashi M. Cofactor-induced orientation of the DNA bases in single-stranded DNA complexed with RecA protein. A fluorescence anisotropy and time-decay study. J Biol Chem. 1991 Mar 25;266(9):5395–5400. [PubMed] [Google Scholar]
  3. Di Capua E., Engel A., Stasiak A., Koller T. Characterization of complexes between recA protein and duplex DNA by electron microscopy. J Mol Biol. 1982 May 5;157(1):87–103. doi: 10.1016/0022-2836(82)90514-9. [DOI] [PubMed] [Google Scholar]
  4. Dombroski D. F., Scraba D. G., Bradley R. D., Morgan A. R. Studies of the interaction of RecA protein with DNA. Nucleic Acids Res. 1983 Nov 11;11(21):7487–7504. doi: 10.1093/nar/11.21.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Egelman E. H., Stasiak A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP. J Mol Biol. 1986 Oct 20;191(4):677–697. doi: 10.1016/0022-2836(86)90453-5. [DOI] [PubMed] [Google Scholar]
  6. Eggleston A. K., Rahim N. A., Kowalczykowski S. C. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res. 1996 Apr 1;24(7):1179–1186. doi: 10.1093/nar/24.7.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flory J., Radding C. M. Visualization of recA protein and its association with DNA: a priming effect of single-strand-binding protein. Cell. 1982 Apr;28(4):747–756. doi: 10.1016/0092-8674(82)90054-x. [DOI] [PubMed] [Google Scholar]
  8. Griffith J., Shores C. G. RecA protein rapidly crystallizes in the presence of spermidine: a valuable step in its purification and physical characterization. Biochemistry. 1985 Jan 1;24(1):158–162. doi: 10.1021/bi00322a022. [DOI] [PubMed] [Google Scholar]
  9. Howard-Flanders P., West S. C., Stasiak A. Role of RecA protein spiral filaments in genetic recombination. Nature. 1984 May 17;309(5965):215–219. doi: 10.1038/309215a0. [DOI] [PubMed] [Google Scholar]
  10. Kowalczykowski S. C. Biochemical and biological function of Escherichia coli RecA protein: behavior of mutant RecA proteins. Biochimie. 1991 Feb-Mar;73(2-3):289–304. doi: 10.1016/0300-9084(91)90216-n. [DOI] [PubMed] [Google Scholar]
  11. Kowalczykowski S. C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu Rev Biophys Biophys Chem. 1991;20:539–575. doi: 10.1146/annurev.bb.20.060191.002543. [DOI] [PubMed] [Google Scholar]
  12. Kowalczykowski S. C., Burk D. L., Krupp R. A. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein. J Mol Biol. 1989 Jun 20;207(4):719–733. doi: 10.1016/0022-2836(89)90239-8. [DOI] [PubMed] [Google Scholar]
  13. Kowalczykowski S. C., Clow J., Krupp R. A. Properties of the duplex DNA-dependent ATPase activity of Escherichia coli RecA protein and its role in branch migration. Proc Natl Acad Sci U S A. 1987 May;84(10):3127–3131. doi: 10.1073/pnas.84.10.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kowalczykowski S. C. Interaction of recA protein with a photoaffinity analogue of ATP, 8-azido-ATP: determination of nucleotide cofactor binding parameters and of the relationship between ATP binding and ATP hydrolysis. Biochemistry. 1986 Oct 7;25(20):5872–5881. doi: 10.1021/bi00368a006. [DOI] [PubMed] [Google Scholar]
  15. Kowalczykowski S. C., Krupp R. A. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol. 1987 Jan 5;193(1):97–113. doi: 10.1016/0022-2836(87)90630-9. [DOI] [PubMed] [Google Scholar]
  16. Kumar K. A., Muniyappa K. Use of structure-directed DNA ligands to probe the binding of recA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J Biol Chem. 1992 Dec 5;267(34):24824–24832. [PubMed] [Google Scholar]
  17. Lauder S. D., Kowalczykowski S. C. Negative co-dominant inhibition of recA protein function. Biochemical properties of the recA1, recA13 and recA56 proteins and the effect of recA56 protein on the activities of the wild-type recA protein function in vitro. J Mol Biol. 1993 Nov 5;234(1):72–86. doi: 10.1006/jmbi.1993.1564. [DOI] [PubMed] [Google Scholar]
  18. Matesoi D., Kittler L., Bell A., Unger E., Lober G. Determination of microscopic binding constants at individual DNA base sequences for the minor groove binders Hoechst 33258, DAPI and pentamidine. Biochem Mol Biol Int. 1996 Feb;38(1):123–132. [PubMed] [Google Scholar]
  19. Menetski J. P., Kowalczykowski S. C. Enhancement of Escherichia coli RecA protein enzymatic function by dATP. Biochemistry. 1989 Jul 11;28(14):5871–5881. doi: 10.1021/bi00440a025. [DOI] [PubMed] [Google Scholar]
  20. Menetski J. P., Kowalczykowski S. C. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol. 1985 Jan 20;181(2):281–295. doi: 10.1016/0022-2836(85)90092-0. [DOI] [PubMed] [Google Scholar]
  21. Menetski J. P., Kowalczykowski S. C. Transfer of recA protein from one polynucleotide to another. Effect of ATP and determination of the processivity of ATP hydrolysis during transfer. J Biol Chem. 1987 Feb 15;262(5):2093–2100. [PubMed] [Google Scholar]
  22. Menetski J. P., Kowalczykowski S. C. Transfer of recA protein from one polynucleotide to another. Kinetic evidence for a ternary intermediate during the transfer reaction. J Biol Chem. 1987 Feb 15;262(5):2085–2092. [PubMed] [Google Scholar]
  23. Menetski J. P., Varghese A., Kowalczykowski S. C. Properties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein. Biochemistry. 1988 Feb 23;27(4):1205–1212. doi: 10.1021/bi00404a021. [DOI] [PubMed] [Google Scholar]
  24. Menge K. L., Bryant F. R. Effect of nucleotide cofactor structure on recA protein-promoted DNA pairing. 1. Three-strand exchange reaction. Biochemistry. 1992 Jun 9;31(22):5151–5157. doi: 10.1021/bi00137a009. [DOI] [PubMed] [Google Scholar]
  25. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  26. Pugh B. F., Cox M. M. Stable binding of recA protein to duplex DNA. Unraveling a paradox. J Biol Chem. 1987 Jan 25;262(3):1326–1336. [PubMed] [Google Scholar]
  27. Rehrauer W. M., Kowalczykowski S. C. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J Biol Chem. 1993 Jan 15;268(2):1292–1297. [PubMed] [Google Scholar]
  28. Silver M. S., Fersht A. R. Investigation of binding between recA protein and single-stranded polynucleotides with the aid of a fluorescent deoxyribonucleic acid derivative. Biochemistry. 1983 Jun 7;22(12):2860–2866. doi: 10.1021/bi00281a014. [DOI] [PubMed] [Google Scholar]
  29. Takahashi M., Hagmar P. Use of ion exchange chromatography for the study of RecA-DNA interaction. FEBS Lett. 1991 Feb 25;279(2):270–272. doi: 10.1016/0014-5793(91)80165-y. [DOI] [PubMed] [Google Scholar]
  30. Takahashi M., Kubista M., Nordén B. Linear dichroism study of RecA-DNA complexes. Structural evidence and binding stoichiometries. J Biol Chem. 1987 Jun 15;262(17):8109–8111. [PubMed] [Google Scholar]
  31. Trotta E., D'Ambrosio E., Del Grosso N., Ravagnan G., Cirilli M., Paci M. 1H NMR study of [d(GCGATCGC)]2 and its interaction with minor groove binding 4',6-diamidino-2-phenylindole. J Biol Chem. 1993 Feb 25;268(6):3944–3951. [PubMed] [Google Scholar]
  32. Uhlin B. E., Clark A. J. Overproduction of the Escherichia coli recA protein without stimulation of its proteolytic activity. J Bacteriol. 1981 Oct;148(1):386–390. doi: 10.1128/jb.148.1.386-390.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Volodin A. A., Shepelev V. A., Kosaganov Y. N. Stoichiometry and kinetics of complex formation by the recA protein and a double-stranded DNA. FEBS Lett. 1982 Aug 16;145(1):53–56. doi: 10.1016/0014-5793(82)81205-2. [DOI] [PubMed] [Google Scholar]
  34. Wilson W. D., Tanious F. A., Barton H. J., Jones R. L., Fox K., Wydra R. L., Strekowski L. DNA sequence dependent binding modes of 4',6-diamidino-2-phenylindole (DAPI). Biochemistry. 1990 Sep 11;29(36):8452–8461. doi: 10.1021/bi00488a036. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES