Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):669–675. doi: 10.1093/nar/26.2.669

Recognition of DNA structure by 434 repressor.

G B Koudelka 1
PMCID: PMC147266  PMID: 9421532

Abstract

In complexes of bacteriophage 434 binding sites with 434 repressor the central 4 bp of the 14 bp site are not contacted by the protein, although changes in these bases alter binding site affinity for the repressor. Our previous data suggested that the ability of the non-contacted central bases to be overtwisted in repressor-DNA complexes governs affinity of the binding site for 434 repressor. This idea was tested by examining the affinity of two central sequence variant 434 binding sites for 434 repressor as a function of binding site average twist. The 434 repressor preferred the relatively overwound binding site to the two more underwound forms. The greatest affinity enhancement resulting from increasing twist was observed with a binding site that is relatively underwound and more resistant to twisting deformation. Consistent with the idea that 434 repressor overtwists its binding site upon DNA binding, we show that 434 repressor is capable of binding to sites bearing a single base insertion in their center (a 15mer), but binds poorly to binding sites bearing central base deletions (12mer and 13mer). The N-terminal dimer interface plays a large role in determining 434 repressor central base preferences. Mutations in this interface eliminate central base discrimination and/or site size preferences. These mutations also lead to changes in the size of the repressor footprint on the various sized DNA sites that are consistent with their binding characteristics.

Full Text

The Full Text of this article is available as a PDF (298.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal A. K., Rodgers D. W., Drottar M., Ptashne M., Harrison S. C. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science. 1988 Nov 11;242(4880):899–907. doi: 10.1126/science.3187531. [DOI] [PubMed] [Google Scholar]
  2. Bell A. C., Koudelka G. B. How 434 repressor discriminates between OR1 and OR3. The influence of contacted and noncontacted base pairs. J Biol Chem. 1995 Jan 20;270(3):1205–1212. doi: 10.1074/jbc.270.3.1205. [DOI] [PubMed] [Google Scholar]
  3. Bell A. C., Koudelka G. B. Operator sequence context influences amino acid-base-pair interactions in 434 repressor-operator complexes. J Mol Biol. 1993 Dec 5;234(3):542–553. doi: 10.1006/jmbi.1993.1610. [DOI] [PubMed] [Google Scholar]
  4. Hagerman P. J. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981 Jul;20(7):1503–1535. doi: 10.1002/bip.1981.360200710. [DOI] [PubMed] [Google Scholar]
  5. Harrison S. C. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. doi: 10.1038/353715a0. [DOI] [PubMed] [Google Scholar]
  6. Harrison S. C., Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. [DOI] [PubMed] [Google Scholar]
  7. Heath P. J., Clendenning J. B., Fujimoto B. S., Schurr J. M. Effect of bending strain on the torsion elastic constant of DNA. J Mol Biol. 1996 Aug 2;260(5):718–730. doi: 10.1006/jmbi.1996.0432. [DOI] [PubMed] [Google Scholar]
  8. Horowitz D. S., Wang J. C. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol. 1984 Feb 15;173(1):75–91. doi: 10.1016/0022-2836(84)90404-2. [DOI] [PubMed] [Google Scholar]
  9. Johnson A. D., Meyer B. J., Ptashne M. Interactions between DNA-bound repressors govern regulation by the lambda phage repressor. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5061–5065. doi: 10.1073/pnas.76.10.5061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koudelka G. B. Bending of synthetic bacteriophage 434 operators by bacteriophage 434 proteins. Nucleic Acids Res. 1991 Aug 11;19(15):4115–4119. doi: 10.1093/nar/19.15.4115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koudelka G. B., Carlson P. DNA twisting and the effects of non-contacted bases on affinity of 434 operator for 434 repressor. Nature. 1992 Jan 2;355(6355):89–91. doi: 10.1038/355089a0. [DOI] [PubMed] [Google Scholar]
  12. Koudelka G. B., Harbury P., Harrison S. C., Ptashne M. DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4633–4637. doi: 10.1073/pnas.85.13.4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koudelka G. B., Harrison S. C., Ptashne M. Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro. 1987 Apr 30-May 6Nature. 326(6116):886–888. doi: 10.1038/326886a0. [DOI] [PubMed] [Google Scholar]
  14. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  15. Lin S. Y., Riggs A. D. Lac repressor binding to non-operator DNA: detailed studies and a comparison of eequilibrium and rate competition methods. J Mol Biol. 1972 Dec 30;72(3):671–690. doi: 10.1016/0022-2836(72)90184-2. [DOI] [PubMed] [Google Scholar]
  16. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  17. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  18. Sauer R. T., Yocum R. R., Doolittle R. F., Lewis M., Pabo C. O. Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature. 1982 Jul 29;298(5873):447–451. doi: 10.1038/298447a0. [DOI] [PubMed] [Google Scholar]
  19. Shore D., Baldwin R. L. Energetics of DNA twisting. II. Topoisomer analysis. J Mol Biol. 1983 Nov 15;170(4):983–1007. doi: 10.1016/s0022-2836(83)80199-5. [DOI] [PubMed] [Google Scholar]
  20. Wharton R. P., Brown E. L., Ptashne M. Substituting an alpha-helix switches the sequence-specific DNA interactions of a repressor. Cell. 1984 Sep;38(2):361–369. doi: 10.1016/0092-8674(84)90491-4. [DOI] [PubMed] [Google Scholar]
  21. Wharton R. P., Ptashne M. A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. 1987 Apr 30-May 6Nature. 326(6116):888–891. doi: 10.1038/326888a0. [DOI] [PubMed] [Google Scholar]
  22. Wu L., Vertino A., Koudelka G. B. Non-contacted bases affect the affinity of synthetic P22 operators for P22 repressor. J Biol Chem. 1992 May 5;267(13):9134–9139. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES