Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):521–524. doi: 10.1093/nar/26.2.521

Human cytosolic asparaginyl-tRNA synthetase: cDNA sequence, functional expression in Escherichia coli and characterization as human autoantigen.

M Beaulande 1, N Tarbouriech 1, M Härtlein 1
PMCID: PMC147268  PMID: 9421509

Abstract

The cDNA for human cytosolic asparaginyl-tRNA synthetase (hsAsnRSc) has been cloned and sequenced. The 1874 bp cDNA contains an open reading frame encoding 548 amino acids with a predicted M r of 62 938. The protein sequence has 58 and 53% identity with the homologous enzymes from Brugia malayi and Saccharomyces cerevisiae respectively. The human enzyme was expressed in Escherichia coli as a fusion protein with an N-terminal 4 kDa calmodulin-binding peptide. A bacterial extract containing the fusion protein catalyzed the aminoacylation reaction of S.cerevisiae tRNA with [14C]asparagine at a 20-fold efficiency level above the control value confirming that this cDNA encodes a human AsnRS. The affinity chromatography purified fusion protein efficiently aminoacylated unfractionated calf liver and yeast tRNA but not E.coli tRNA, suggesting that the recombinant protein is the cytosolic AsnRS. Several human anti-synthetase sera were tested for their ability to neutralize hsAsnRSc activity. A human autoimmune serum (anti-KS) neutralized hsAsnRSc activity and this reaction was confirmed by western blot analysis. The human asparaginyl-tRNA synthetase appears to be like the alanyl- and histidyl-tRNA synthetases another example of a human Class II aminoacyl-tRNA synthetase involved in autoimmune reactions.

Full Text

The Full Text of this article is available as a PDF (188.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anselme J., Härtlein M. Asparaginyl-tRNA synthetase from Escherichia coli has significant sequence homologies with yeast aspartyl-tRNA synthetase. Gene. 1989 Dec 14;84(2):481–485. doi: 10.1016/0378-1119(89)90524-6. [DOI] [PubMed] [Google Scholar]
  2. Cusack S., Berthet-Colominas C., Härtlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990 Sep 20;347(6290):249–255. doi: 10.1038/347249a0. [DOI] [PubMed] [Google Scholar]
  3. Cusack S., Härtlein M., Leberman R. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 1991 Jul 11;19(13):3489–3498. doi: 10.1093/nar/19.13.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  5. Eriani G., Dirheimer G., Gangloff J. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Nucleic Acids Res. 1990 Dec 11;18(23):7109–7118. doi: 10.1093/nar/18.23.7109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fahoum S. K., Yang D. C. Purification of mammalian histidyl-tRNA synthetase and its interaction with myositis-specific anti-Jo-1 antibodies. Biochemistry. 1987 Sep 8;26(18):5871–5877. doi: 10.1021/bi00392a044. [DOI] [PubMed] [Google Scholar]
  7. Gatti D. L., Tzagoloff A. Structure and evolution of a group of related aminoacyl-tRNA synthetases. J Mol Biol. 1991 Apr 5;218(3):557–568. doi: 10.1016/0022-2836(91)90701-7. [DOI] [PubMed] [Google Scholar]
  8. Leberman R., Antonsson B., Giovanelli R., Guariguata R., Schumann R., Wittinghofer A. A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Anal Biochem. 1980 May 1;104(1):29–36. doi: 10.1016/0003-2697(80)90272-9. [DOI] [PubMed] [Google Scholar]
  9. Mirande M., Le Corre D., Waller J. P. A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex. Eur J Biochem. 1985 Mar 1;147(2):281–289. doi: 10.1111/j.1432-1033.1985.tb08748.x. [DOI] [PubMed] [Google Scholar]
  10. Ramsden D. A., Chen J., Miller F. W., Misener V., Bernstein R. M., Siminovitch K. A., Tsui F. W. Epitope mapping of the cloned human autoantigen, histidyl-tRNA synthetase. Analysis of the myositis-associated anti-Jo-1 autoimmune response. J Immunol. 1989 Oct 1;143(7):2267–2272. [PubMed] [Google Scholar]
  11. Seignovert L., Härtlein M., Leberman R. Asparaginyl-tRNA synthetase from Thermus thermophilus HB8. Sequence of the gene and crystallization of the enzyme expressed in Escherichia coli. Eur J Biochem. 1996 Jul 15;239(2):501–508. doi: 10.1111/j.1432-1033.1996.0501u.x. [DOI] [PubMed] [Google Scholar]
  12. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Targoff I. N. Humoral immunity in polymyositis/dermatomyositis. J Invest Dermatol. 1993 Jan;100(1):116S–123S. doi: 10.1111/1523-1747.ep12356607. [DOI] [PubMed] [Google Scholar]
  14. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vincent C., Borel F., Willison J. C., Leberman R., Härtlein M. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation. Nucleic Acids Res. 1995 Apr 11;23(7):1113–1118. doi: 10.1093/nar/23.7.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zheng C. F., Simcox T., Xu L., Vaillancourt P. A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene. 1997 Feb 20;186(1):55–60. doi: 10.1016/s0378-1119(96)00680-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES