Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):431–438. doi: 10.1093/nar/26.2.431

Zwitterionic oligodeoxyribonucleotide N3'-->P5' phosphoramidates: synthesis and properties.

N Mignet 1, S M Gryaznov 1
PMCID: PMC147269  PMID: 9421496

Abstract

Zwitterionic, net neutral oligonucleotides containing alternating negatively charged N3'-->P5' phosphoramidate monoester and positively charged phosphoramidate diester groups were synthesized. The ability of zwitterionic phosphoramidates to form complexes with complementary DNA and RNA was evaluated. Stoichiometry and salt dependency of these complexes were determined as a function of the nature of the heterocyclic bases of the zwitterionic compounds. Unlike the melting temperatures of the natural phosphodiester-containing oligomers, the T m of the duplexes formed with the zwitterionic oligothymidylates was salt concentration independent. The thermal stability of these duplexes was much higher with Delta T m values of 20-35 degrees C relatively to phosphodiester counterparts at low salt concentrations. The zwitterionic oligoadenylate formed only 2Py:1Pu triplexes with complementary poly(U) or poly(dT) strands. The thermal stability of these complexes was dependent on salt concentration. Also, the T m values of the complexes formed by the zwitterionic oligoadenylate with poly(U) were 6-41 degrees C higher than for the natural phosphodiester counterpart. Triplexes of this compound with poly(dT) were also more stable with a Delta T m value of 22 degrees C at low salt concentrations. Complexes formed by the zwitterionic oligonucleotides with complementary RNAs were not substrates for RNase H. Surprisingly, the duplex formed by the all anionic alternating N3'-->P5'phosphoramidate-phosphodiester oligothymidylate and poly(A) was a good substrate for RNase H.

Full Text

The Full Text of this article is available as a PDF (124.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen J. K., Schultz R. G., Lloyd D. H., Gryaznov S. M. Synthesis of oligodeoxyribonucleotide N3'-->P5' phosphoramidates. Nucleic Acids Res. 1995 Jul 25;23(14):2661–2668. doi: 10.1093/nar/23.14.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dagle J. M., Weeks D. L. Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation. Nucleic Acids Res. 1996 Jun 1;24(11):2143–2149. doi: 10.1093/nar/24.11.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeDionisio L., Gryaznov S. M. Analysis of a ribonuclease H digestion of N3'-->P5' phosphoramidate-RNA duplexes by capillary gel electrophoresis. J Chromatogr B Biomed Appl. 1995 Jul 7;669(1):125–131. doi: 10.1016/0378-4347(95)00153-a. [DOI] [PubMed] [Google Scholar]
  4. Ding D., Grayaznov S. M., Lloyd D. H., Chandrasekaran S., Yao S., Ratmeyer L., Pan Y., Wilson W. D. An oligodeoxyribonucleotide N3'--> P5' phosphoramidate duplex forms an A-type helix in solution. Nucleic Acids Res. 1996 Jan 15;24(2):354–360. doi: 10.1093/nar/24.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi: 10.1146/annurev.bi.54.070185.002055. [DOI] [PubMed] [Google Scholar]
  6. Escudé C., Giovannangeli C., Sun J. S., Lloyd D. H., Chen J. K., Gryaznov S. M., Garestier T., Hélène C. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4365–4369. doi: 10.1073/pnas.93.9.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fathi R., Huang Q., Coppola G., Delaney W., Teasdale R., Krieg A. M., Cook A. F. Oligonucleotides with novel, cationic backbone substituents: aminoethylphosphonates. Nucleic Acids Res. 1994 Dec 11;22(24):5416–5424. doi: 10.1093/nar/22.24.5416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Froehler B. C., Ng P. G., Matteucci M. D. Synthesis of DNA via deoxynucleoside H-phosphonate intermediates. Nucleic Acids Res. 1986 Jul 11;14(13):5399–5407. doi: 10.1093/nar/14.13.5399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Froehler B., Ng P., Matteucci M. Phosphoramidate analogues of DNA: synthesis and thermal stability of heteroduplexes. Nucleic Acids Res. 1988 Jun 10;16(11):4831–4839. doi: 10.1093/nar/16.11.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gryaznov S. M., Letsinger R. L. Synthesis and properties of oligonucleotides containing aminodeoxythymidine units. Nucleic Acids Res. 1992 Jul 11;20(13):3403–3409. doi: 10.1093/nar/20.13.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gryaznov S. M., Lloyd D. H., Chen J. K., Schultz R. G., DeDionisio L. A., Ratmeyer L., Wilson W. D. Oligonucleotide N3'-->P5' phosphoramidates. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5798–5802. doi: 10.1073/pnas.92.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gryaznov S., Skorski T., Cucco C., Nieborowska-Skorska M., Chiu C. Y., Lloyd D., Chen J. K., Koziolkiewicz M., Calabretta B. Oligonucleotide N3'-->P5' phosphoramidates as antisense agents. Nucleic Acids Res. 1996 Apr 15;24(8):1508–1514. doi: 10.1093/nar/24.8.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heidenreich O., Gryaznov S., Nerenberg M. RNase H-independent antisense activity of oligonucleotide N3 '--> P5 ' phosphoramidates. Nucleic Acids Res. 1997 Feb 15;25(4):776–780. doi: 10.1093/nar/25.4.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hélène C., Toulmé J. J. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta. 1990 Jun 21;1049(2):99–125. doi: 10.1016/0167-4781(90)90031-v. [DOI] [PubMed] [Google Scholar]
  15. Lemaitre M., Bayard B., Lebleu B. Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc Natl Acad Sci U S A. 1987 Feb;84(3):648–652. doi: 10.1073/pnas.84.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lima W. F., Crooke S. T. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids. Biochemistry. 1997 Jan 14;36(2):390–398. doi: 10.1021/bi962230p. [DOI] [PubMed] [Google Scholar]
  17. Miller P. S., McParland K. B., Jayaraman K., Ts'o P. O. Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry. 1981 Mar 31;20(7):1874–1880. doi: 10.1021/bi00510a024. [DOI] [PubMed] [Google Scholar]
  18. Pless R. C., Ts'o P. O. Duplex formation of a nonionic oligo(deoxythymidylate) analogue (heptadeoxythymidylyl-(3'-5')-deoxythymidine heptaethyl ester (d-(Tp(Et))7T)) with poly(deoxyadenylate). Evaluation of the electrostatic interaction. Biochemistry. 1977 Mar 22;16(6):1239–1250. doi: 10.1021/bi00625a033. [DOI] [PubMed] [Google Scholar]
  19. Stevenson M., Iversen P. L. Inhibition of human immunodeficiency virus type 1-mediated cytopathic effects by poly(L-lysine)-conjugated synthetic antisense oligodeoxyribonucleotides. J Gen Virol. 1989 Oct;70(Pt 10):2673–2682. doi: 10.1099/0022-1317-70-10-2673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES