Abstract
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abremski K. E., Hoess R. H. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng. 1992 Jan;5(1):87–91. doi: 10.1093/protein/5.1.87. [DOI] [PubMed] [Google Scholar]
- Amakawa R., Jing W., Ozawa K., Matsunami N., Hamaguchi Y., Matsuda F., Kawaichi M., Honjo T. Human Jk recombination signal binding protein gene (IGKJRB): comparison with its mouse homologue. Genomics. 1993 Aug;17(2):306–315. doi: 10.1006/geno.1993.1326. [DOI] [PubMed] [Google Scholar]
- Amin A. A., Sadowski P. D. Synthesis of an enzymatically active FLP recombinase in vitro: search for a DNA-binding domain. Mol Cell Biol. 1989 May;9(5):1987–1995. doi: 10.1128/mcb.9.5.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Araki H., Jearnpipatkul A., Tatsumi H., Sakurai T., Ushio K., Muta T., Oshima Y. Molecular and functional organization of yeast plasmid pSR1. J Mol Biol. 1985 Mar 20;182(2):191–203. doi: 10.1016/0022-2836(85)90338-9. [DOI] [PubMed] [Google Scholar]
- Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V., Pierson L. S., 3rd The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. doi: 10.1002/j.1460-2075.1986.tb04229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahrani F. K., Mobley H. L. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J Bacteriol. 1994 Jun;176(11):3412–3419. doi: 10.1128/jb.176.11.3412-3419.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker J., Limberger R., Schneider S. J., Campbell A. Recombination and modular exchange in the genesis of new lambdoid phages. New Biol. 1991 Mar;3(3):297–308. [PubMed] [Google Scholar]
- Bannam T. L., Crellin P. K., Rood J. I. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol. 1995 May;16(3):535–551. doi: 10.1111/j.1365-2958.1995.tb02417.x. [DOI] [PubMed] [Google Scholar]
- Barker R. F., Harberd N. P., Jarvis M. G., Flavell R. B. Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol. 1988 May 5;201(1):1–17. doi: 10.1016/0022-2836(88)90434-2. [DOI] [PubMed] [Google Scholar]
- Barton G. J. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol. 1990;183:403–428. doi: 10.1016/0076-6879(90)83027-7. [DOI] [PubMed] [Google Scholar]
- Baum J. A. Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol. 1994 May;176(10):2835–2845. doi: 10.1128/jb.176.10.2835-2845.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker J., Brendel M. Molecular characterization of the xerC gene of Lactobacillus leichmannii encoding a site-specific recombinase and two adjacent heat shock genes. Curr Microbiol. 1996 Apr;32(4):232–236. doi: 10.1007/s002849900042. [DOI] [PubMed] [Google Scholar]
- Bernstein R. M., Schluter S. F., Bernstein H., Marchalonis J. J. Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9454–9459. doi: 10.1073/pnas.93.18.9454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhagwat A. S., Johnson B., Weule K., Roberts R. J. Primary sequence of the EcoRII endonuclease and properties of its fusions with beta-galactosidase. J Biol Chem. 1990 Jan 15;265(2):767–773. [PubMed] [Google Scholar]
- Blakely G. W., Davidson A. O., Sherratt D. J. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. J Mol Biol. 1997 Jan 10;265(1):30–39. doi: 10.1006/jmbi.1996.0709. [DOI] [PubMed] [Google Scholar]
- Blakely G. W., Sherratt D. J. Cis and trans in site-specific recombination. Mol Microbiol. 1996 Apr;20(1):234–237. doi: 10.1111/j.1365-2958.1996.tb02505.x. [DOI] [PubMed] [Google Scholar]
- Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell. 1993 Oct 22;75(2):351–361. doi: 10.1016/0092-8674(93)80076-q. [DOI] [PubMed] [Google Scholar]
- Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
- Boyce J. D., Davidson B. E., Hillier A. J. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Appl Environ Microbiol. 1995 Nov;61(11):4099–4104. doi: 10.1128/aem.61.11.4099-4104.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brasch M. A., Pettis G. S., Lee S. C., Cohen S. N. Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans. J Bacteriol. 1993 May;175(10):3067–3074. doi: 10.1128/jb.175.10.3067-3074.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brassard S., Paquet H., Roy P. H. A transposon-like sequence adjacent to the AccI restriction-modification operon. Gene. 1995 May 19;157(1-2):69–72. doi: 10.1016/0378-1119(94)00734-a. [DOI] [PubMed] [Google Scholar]
- Brown D. P., Idler K. B., Backer D. M., Donadio S., Katz L. Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans. Mol Gen Genet. 1994 Jan;242(2):185–193. doi: 10.1007/BF00391012. [DOI] [PubMed] [Google Scholar]
- Brown D. P., Idler K. B., Katz L. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. 1990 Apr;172(4):1877–1888. doi: 10.1128/jb.172.4.1877-1888.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruttin A., Desiere F., Lucchini S., Foley S., Brüssow H. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21. Virology. 1997 Jun 23;233(1):136–148. doi: 10.1006/viro.1997.8603. [DOI] [PubMed] [Google Scholar]
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L., Blattner F. R. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105–2119. doi: 10.1093/nar/23.12.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carrasco C. D., Buettner J. A., Golden J. W. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):791–795. doi: 10.1073/pnas.92.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll J. D., Cafferkey M. T., Coleman D. C. Serotype F double- and triple-converting phage insertionally inactivate the Staphylococcus aureus beta-toxin determinant by a common molecular mechanism. FEMS Microbiol Lett. 1993 Jan 15;106(2):147–155. doi: 10.1111/j.1574-6968.1993.tb05951.x. [DOI] [PubMed] [Google Scholar]
- Cheetham B. F., Tattersall D. B., Bloomfield G. A., Rood J. I., Katz M. E. Identification of a gene encoding a bacteriophage-related integrase in a vap region of the Dichelobacter nodosus genome. Gene. 1995 Aug 30;162(1):53–58. doi: 10.1016/0378-1119(95)00315-w. [DOI] [PubMed] [Google Scholar]
- Chen J. W., Evans B. R., Yang S. H., Araki H., Oshima Y., Jayaram M. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine. Mol Cell Biol. 1992 Sep;12(9):3757–3765. doi: 10.1128/mcb.12.9.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. W., Evans B. R., Yang S. H., Teplow D. B., Jayaram M. Domain of a yeast site-specific recombinase (Flp) that recognizes its target site. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5944–5948. doi: 10.1073/pnas.88.14.5944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. W., Lee J., Jayaram M. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell. 1992 May 15;69(4):647–658. doi: 10.1016/0092-8674(92)90228-5. [DOI] [PubMed] [Google Scholar]
- Chen X. J., Saliola M., Falcone C., Bianchi M. M., Fukuhara H. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res. 1986 Jun 11;14(11):4471–4481. doi: 10.1093/nar/14.11.4471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow W. Y., Wang C. K., Lee W. L., Kung S. S., Wu Y. M. Molecular characterization of a deletion-prone region of plasmid pAE1 of Alcaligenes eutrophus H1. J Bacteriol. 1995 Jul;177(14):4157–4161. doi: 10.1128/jb.177.14.4157-4161.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark C. A., Beltrame J., Manning P. A. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene. 1991 Oct 30;107(1):43–52. doi: 10.1016/0378-1119(91)90295-m. [DOI] [PubMed] [Google Scholar]
- Colloms S. D., McCulloch R., Grant K., Neilson L., Sherratt D. J. Xer-mediated site-specific recombination in vitro. EMBO J. 1996 Mar 1;15(5):1172–1181. [PMC free article] [PubMed] [Google Scholar]
- Colloms S. D., Sykora P., Szatmari G., Sherratt D. J. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol. 1990 Dec;172(12):6973–6980. doi: 10.1128/jb.172.12.6973-6980.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad M., Topal M. D. Modified DNA fragments activate NaeI cleavage of refractory DNA sites. Nucleic Acids Res. 1992 Oct 11;20(19):5127–5130. doi: 10.1093/nar/20.19.5127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crellin P. K., Rood J. I. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J Bacteriol. 1997 Aug;179(16):5148–5156. doi: 10.1128/jb.179.16.5148-5156.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Disqué-Kochem C., Seidel U., Helsberg M., Eichenlaub R. The repeated sequences (incB) preceding the protein E gene of plasmid mini-F are essential for replication. Mol Gen Genet. 1986 Jan;202(1):132–135. doi: 10.1007/BF00330529. [DOI] [PubMed] [Google Scholar]
- Dorgai L., Yagil E., Weisberg R. A. Identifying determinants of recombination specificity: construction and characterization of mutant bacteriophage integrases. J Mol Biol. 1995 Sep 15;252(2):178–188. doi: 10.1006/jmbi.1995.0486. [DOI] [PubMed] [Google Scholar]
- Dupont L., Boizet-Bonhoure B., Coddeville M., Auvray F., Ritzenthaler P. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol. 1995 Feb;177(3):586–595. doi: 10.1128/jb.177.3.586-595.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito D., Scocca J. J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 1997 Sep 15;25(18):3605–3614. doi: 10.1093/nar/25.18.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
- Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997 May 22;387(6631):394–401. doi: 10.1038/387394a0. [DOI] [PubMed] [Google Scholar]
- Fremaux C., De Antoni G. L., Raya R. R., Klaenhammer T. R. Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage phi adh. Gene. 1993 Apr 15;126(1):61–66. doi: 10.1016/0378-1119(93)90590-y. [DOI] [PubMed] [Google Scholar]
- Friesen H., Sadowski P. D. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation. J Mol Biol. 1992 May 20;225(2):313–326. doi: 10.1016/0022-2836(92)90924-9. [DOI] [PubMed] [Google Scholar]
- Furukawa T., Kawaichi M., Matsunami N., Ryo H., Nishida Y., Honjo T. The Drosophila RBP-J kappa gene encodes the binding protein for the immunoglobulin J kappa recombination signal sequence. J Biol Chem. 1991 Dec 5;266(34):23334–23340. [PubMed] [Google Scholar]
- Gabriel K., Schmid H., Schmidt U., Rausch H. The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg)(AGG) gene of Streptomyces rimosus. Nucleic Acids Res. 1995 Jan 11;23(1):58–63. doi: 10.1093/nar/23.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman S. D., Scocca J. J. Nucleotide sequence and expression of the gene for the site-specific integration protein from bacteriophage HP1 of Haemophilus influenzae. J Bacteriol. 1989 Aug;171(8):4232–4240. doi: 10.1128/jb.171.8.4232-4240.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregg K., Kennedy B. G., Klieve A. V. Cloning and DNA sequence analysis of the region containing attP of the temperate phage phi AR29 of Prevotella ruminicola AR29. Microbiology. 1994 Aug;140(Pt 8):2109–2114. doi: 10.1099/13500872-140-8-2109. [DOI] [PubMed] [Google Scholar]
- Guo F., Gopaul D. N., van Duyne G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. 1997 Sep 4;389(6646):40–46. doi: 10.1038/37925. [DOI] [PubMed] [Google Scholar]
- Haeseleer F., Pollet J. F., Bollen A., Jacobs P. Molecular cloning and sequencing of the attachment site and integrase gene of the temperate mycobacteriophage FRAT1. Nucleic Acids Res. 1992 Mar 25;20(6):1420–1420. doi: 10.1093/nar/20.6.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagège J., Boccard F., Smokvina T., Pernodet J. L., Friedmann A., Guérineau M. Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid. 1994 Mar;31(2):166–183. doi: 10.1006/plas.1994.1018. [DOI] [PubMed] [Google Scholar]
- Hall R. M., Vockler C. The region of the IncN plasmid R46 coding for resistance to beta-lactam antibiotics, streptomycin/spectinomycin and sulphonamides is closely related to antibiotic resistance segments found in IncW plasmids and in Tn21-like transposons. Nucleic Acids Res. 1987 Sep 25;15(18):7491–7501. doi: 10.1093/nar/15.18.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y. W., Gumport R. I., Gardner J. F. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. EMBO J. 1993 Dec;12(12):4577–4584. doi: 10.1002/j.1460-2075.1993.tb06146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y. W., Gumport R. I., Gardner J. F. Mapping the functional domains of bacteriophage lambda integrase protein. J Mol Biol. 1994 Jan 21;235(3):908–925. doi: 10.1006/jmbi.1994.1048. [DOI] [PubMed] [Google Scholar]
- Hartley J. L., Donelson J. E. Nucleotide sequence of the yeast plasmid. Nature. 1980 Aug 28;286(5776):860–865. doi: 10.1038/286860a0. [DOI] [PubMed] [Google Scholar]
- Hatfull G. F., Sarkis G. J. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol. 1993 Feb;7(3):395–405. doi: 10.1111/j.1365-2958.1993.tb01131.x. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Matsumoto H., Ohnishi M., Terawaki Y. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol Microbiol. 1993 Mar;7(5):657–667. doi: 10.1111/j.1365-2958.1993.tb01157.x. [DOI] [PubMed] [Google Scholar]
- Hickman A. B., Waninger S., Scocca J. J., Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell. 1997 Apr 18;89(2):227–237. doi: 10.1016/s0092-8674(00)80202-0. [DOI] [PubMed] [Google Scholar]
- Hoess R. H., Foeller C., Bidwell K., Landy A. Site-specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc Natl Acad Sci U S A. 1980 May;77(5):2482–2486. doi: 10.1073/pnas.77.5.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoess R., Abremski K., Irwin S., Kendall M., Mack A. DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol. 1990 Dec 20;216(4):873–882. doi: 10.1016/S0022-2836(99)80007-2. [DOI] [PubMed] [Google Scholar]
- Hoess R., Wierzbicki A., Abremski K. Isolation and characterization of intermediates in site-specific recombination. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6840–6844. doi: 10.1073/pnas.84.19.6840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honjo T. The shortest path from the surface to the nucleus: RBP-J kappa/Su(H) transcription factor. Genes Cells. 1996 Jan;1(1):1–9. doi: 10.1046/j.1365-2443.1996.10010.x. [DOI] [PubMed] [Google Scholar]
- Höfte M., Dong Q., Kourambas S., Krishnapillai V., Sherratt D., Mergeay M. The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol. 1994 Dec;14(5):1011–1020. doi: 10.1111/j.1365-2958.1994.tb01335.x. [DOI] [PubMed] [Google Scholar]
- Jayaram M., Crain K. L., Parsons R. L., Harshey R. M. Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7902–7906. doi: 10.1073/pnas.85.21.7902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayaram M. Phosphoryl transfer in Flp recombination: a template for strand transfer mechanisms. Trends Biochem Sci. 1994 Feb;19(2):78–82. doi: 10.1016/0968-0004(94)90039-6. [DOI] [PubMed] [Google Scholar]
- Jayaram M. The cis-trans paradox of integrase. Science. 1997 Apr 4;276(5309):49–51. doi: 10.1126/science.276.5309.49. [DOI] [PubMed] [Google Scholar]
- Jo K., Topal M. D. DNA topoisomerase and recombinase activities in Nae I restriction endonuclease. Science. 1995 Mar 24;267(5205):1817–1820. doi: 10.1126/science.7892605. [DOI] [PubMed] [Google Scholar]
- Johnston M., Andrews S., Brinkman R., Cooper J., Ding H., Dover J., Du Z., Favello A., Fulton L., Gattung S. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077–2082. doi: 10.1126/science.8091229. [DOI] [PubMed] [Google Scholar]
- Kalionis B., Dodd I. B., Egan J. B. Control of gene expression in the P2-related template coliphages. III. DNA sequence of the major control region of phage 186. J Mol Biol. 1986 Sep 20;191(2):199–209. doi: 10.1016/0022-2836(86)90257-3. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
- Kholodii G. Y., Yurieva O. V., Gorlenko Z., Mindlin S. Z., Bass I. A., Lomovskaya O. L., Kopteva A. V., Nikiforov V. G. Tn5041: a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn4651. Microbiology. 1997 Aug;143(Pt 8):2549–2556. doi: 10.1099/00221287-143-8-2549. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., Nash H. A. Nicking-closing activity associated with bacteriophage lambda int gene product. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3760–3764. doi: 10.1073/pnas.76.8.3760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim N. S., Kato T., Abe N., Kato S. Nucleotide sequence of human cDNA encoding eukaryotic initiation factor 4AI. Nucleic Acids Res. 1993 Apr 25;21(8):2012–2012. doi: 10.1093/nar/21.8.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S. R., Komano T. Cloning and nucleotide sequence of the ColIb shufflon. Plasmid. 1989 Sep;22(2):180–184. doi: 10.1016/0147-619x(89)90029-2. [DOI] [PubMed] [Google Scholar]
- Kirby J. E., Trempy J. E., Gottesman S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J Bacteriol. 1994 Apr;176(7):2068–2081. doi: 10.1128/jb.176.7.2068-2081.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 1986 Jun;5(6):1389–1393. doi: 10.1002/j.1460-2075.1986.tb04372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kodaira K. I., Oki M., Kakikawa M., Watanabe N., Hirakawa M., Yamada K., Taketo A. Genome structure of the Lactobacillus temperate phage phi g1e: the whole genome sequence and the putative promoter/repressor system. Gene. 1997 Mar 10;187(1):45–53. doi: 10.1016/s0378-1119(96)00687-7. [DOI] [PubMed] [Google Scholar]
- Krause M., Guiney D. G. Identification of a multimer resolution system involved in stabilization of the Salmonella dublin virulence plasmid pSDL2. J Bacteriol. 1991 Sep;173(18):5754–5762. doi: 10.1128/jb.173.18.5754-5762.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubo A., Kusukawa A., Komano T. Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the IncI1 plasmid R64: homology to the site-specific recombinases of integrase family. Mol Gen Genet. 1988 Jul;213(1):30–35. doi: 10.1007/BF00333394. [DOI] [PubMed] [Google Scholar]
- Kulpa J., Dixon J. E., Pan G., Sadowski P. D. Mutations of the FLP recombinase gene that cause a deficiency in DNA bending and strand cleavage. J Biol Chem. 1993 Jan 15;268(2):1101–1108. [PubMed] [Google Scholar]
- Kwon H. J., Tirumalai R., Landy A., Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997 Apr 4;276(5309):126–131. doi: 10.1126/science.276.5309.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem. 1989;58:913–949. doi: 10.1146/annurev.bi.58.070189.004405. [DOI] [PubMed] [Google Scholar]
- Lane D., de Feyter R., Kennedy M., Phua S. H., Semon D. D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 1986 Dec 22;14(24):9713–9728. [PMC free article] [PubMed] [Google Scholar]
- Le Marrec C., Moreau S., Loury S., Blanco C., Trautwetter A. Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus" C70. J Bacteriol. 1996 Apr;178(7):1996–2004. doi: 10.1128/jb.178.7.1996-2004.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebreton B., Prasad P. V., Jayaram M., Youderian P. Mutations that improve the binding of yeast FLP recombinase to its substrate. Genetics. 1988 Mar;118(3):393–400. doi: 10.1093/genetics/118.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. H., Pascopella L., Jacobs W. R., Jr, Hatfull G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. doi: 10.1073/pnas.88.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leong J. M., Nunes-Düby S. E., Oser A. B., Lesser C. F., Youderian P., Susskind M. M., Landy A. Structural and regulatory divergence among site-specific recombination genes of lambdoid phage. J Mol Biol. 1986 Jun 20;189(4):603–616. doi: 10.1016/0022-2836(86)90491-2. [DOI] [PubMed] [Google Scholar]
- Lillehaug D., Birkeland N. K. Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage phi LC3 and construction of integration-negative phi LC3 mutants. J Bacteriol. 1993 Mar;175(6):1745–1755. doi: 10.1128/jb.175.6.1745-1755.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limberger R. J., Campbell A. M. Functional elements of DNA upstream from the integrase operon that are conserved in bacteriophages 434 and lambda. Gene. 1987;61(2):135–144. doi: 10.1016/0378-1119(87)90108-9. [DOI] [PubMed] [Google Scholar]
- Linder P., Slonimski P. P. Sequence of the genes TIF1 and TIF2 from Saccharomyces cerevisiae coding for a translation initiation factor. Nucleic Acids Res. 1988 Nov 11;16(21):10359–10359. doi: 10.1093/nar/16.21.10359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsey D. F., Mullin D. A., Walker J. R. Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. J Bacteriol. 1989 Nov;171(11):6197–6205. doi: 10.1128/jb.171.11.6197-6205.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacWilliams M. P., Gumport R. I., Gardner J. F. Genetic analysis of the bacteriophage lambda attL nucleoprotein complex. Genetics. 1996 Jul;143(3):1069–1079. doi: 10.1093/genetics/143.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madon J., Moretti P., Hütter R. Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet. 1987 Sep;209(2):257–264. doi: 10.1007/BF00329651. [DOI] [PubMed] [Google Scholar]
- Mahillon J., Seurinck J. Complete nucleotide sequence of pGI2, a Bacillus thuringiensis plasmid containing Tn4430. Nucleic Acids Res. 1988 Dec 23;16(24):11827–11828. doi: 10.1093/nar/16.24.11827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maniloff J., Kampo G. J., Dascher C. C. Sequence analysis of a unique temperature phage: mycoplasma virus L2. Gene. 1994 Apr 8;141(1):1–8. doi: 10.1016/0378-1119(94)90120-1. [DOI] [PubMed] [Google Scholar]
- Matsunami N., Hamaguchi Y., Yamamoto Y., Kuze K., Kangawa K., Matsuo H., Kawaichi M., Honjo T. A protein binding to the J kappa recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature. 1989 Dec 21;342(6252):934–937. doi: 10.1038/342934a0. [DOI] [PubMed] [Google Scholar]
- McLachlin J. R., Miller L. K. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol. 1994 Dec;68(12):7746–7756. doi: 10.1128/jvi.68.12.7746-7756.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McShan W. M., Tang Y. F., Ferretti J. J. Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol Microbiol. 1997 Feb;23(4):719–728. doi: 10.1046/j.1365-2958.1997.2591616.x. [DOI] [PubMed] [Google Scholar]
- Muramatsu S., Mizuno T. Nucleotide sequence of the region encompassing the int gene of a cryptic prophage and the dna Y gene flanked by a curved DNA sequence of Escherichia coli K12. Mol Gen Genet. 1990 Jan;220(2):325–328. doi: 10.1007/BF00260503. [DOI] [PubMed] [Google Scholar]
- Murphy E., Huwyler L., de Freire Bastos M. do C. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 1985 Dec 1;4(12):3357–3365. doi: 10.1002/j.1460-2075.1985.tb04089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunes-Düby S. E., Tirumalai R. S., Dorgai L., Yagil E., Weisberg R. A., Landy A. Lambda integrase cleaves DNA in cis. EMBO J. 1994 Sep 15;13(18):4421–4430. doi: 10.1002/j.1460-2075.1994.tb06762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osano E., Arakawa Y., Wacharotayankun R., Ohta M., Horii T., Ito H., Yoshimura F., Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994 Jan;38(1):71–78. doi: 10.1128/aac.38.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palm P., Schleper C., Grampp B., Yeats S., McWilliam P., Reiter W. D., Zillig W. Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology. 1991 Nov;185(1):242–250. doi: 10.1016/0042-6822(91)90771-3. [DOI] [PubMed] [Google Scholar]
- Pan G., Luetke K., Juby C. D., Brousseau R., Sadowski P. Ligation of synthetic activated DNA substrates by site-specific recombinases and topoisomerase I. J Biol Chem. 1993 Feb 15;268(5):3683–3689. [PubMed] [Google Scholar]
- Pan G., Luetke K., Sadowski P. D. Mechanism of cleavage and ligation by FLP recombinase: classification of mutations in FLP protein by in vitro complementation analysis. Mol Cell Biol. 1993 Jun;13(6):3167–3175. doi: 10.1128/mcb.13.6.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pargellis C. A., Nunes-Düby S. E., de Vargas L. M., Landy A. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J Biol Chem. 1988 Jun 5;263(16):7678–7685. [PubMed] [Google Scholar]
- Parsons R. L., Evans B. R., Zheng L., Jayaram M. Functional analysis of Arg-308 mutants of Flp recombinase. Possible role of Arg-308 in coupling substrate binding to catalysis. J Biol Chem. 1990 Mar 15;265(8):4527–4533. [PubMed] [Google Scholar]
- Parsons R. L., Prasad P. V., Harshey R. M., Jayaram M. Step-arrest mutants of FLP recombinase: implications for the catalytic mechanism of DNA recombination. Mol Cell Biol. 1988 Aug;8(8):3303–3310. doi: 10.1128/mcb.8.8.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philipp W. J., Poulet S., Eiglmeier K., Pascopella L., Balasubramanian V., Heym B., Bergh S., Bloom B. R., Jacobs W. R., Jr, Cole S. T. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3132–3137. doi: 10.1073/pnas.93.7.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierson L. S., 3rd, Kahn M. L. Integration of satellite bacteriophage P4 in Escherichia coli. DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol. 1987 Aug 5;196(3):487–496. doi: 10.1016/0022-2836(87)90026-x. [DOI] [PubMed] [Google Scholar]
- Poyart-Salmeron C., Trieu-Cuot P., Carlier C., Courvalin P. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 1989 Aug;8(8):2425–2433. doi: 10.1002/j.1460-2075.1989.tb08373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauch P. J., de Vos W. M. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 1994 Apr;176(8):2165–2171. doi: 10.1128/jb.176.8.2165-2171.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Recchia G. D., Hall R. M. Gene cassettes: a new class of mobile element. Microbiology. 1995 Dec;141(Pt 12):3015–3027. doi: 10.1099/13500872-141-12-3015. [DOI] [PubMed] [Google Scholar]
- Rohozinski J., Goorha R. A frog virus 3 gene codes for a protein containing the motif characteristic of the INT family of integrases. Virology. 1992 Feb;186(2):693–700. doi: 10.1016/0042-6822(92)90036-o. [DOI] [PubMed] [Google Scholar]
- Sadowski P. D. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 1993 Jun;7(9):760–767. doi: 10.1096/fasebj.7.9.8392474. [DOI] [PubMed] [Google Scholar]
- Sadowski P. Site-specific recombinases: changing partners and doing the twist. J Bacteriol. 1986 Feb;165(2):341–347. doi: 10.1128/jb.165.2.341-347.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena P., Whang I., Voziyanov Y., Harkey C., Argos P., Jayaram M., Dandekar T. Probing Flp: a new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, mutagenesis and non-canonical DNA target sites. Biochim Biophys Acta. 1997 Jul 18;1340(2):187–204. doi: 10.1016/s0167-4838(97)00017-4. [DOI] [PubMed] [Google Scholar]
- Schatz D. G., Oettinger M. A., Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell. 1989 Dec 22;59(6):1035–1048. doi: 10.1016/0092-8674(89)90760-5. [DOI] [PubMed] [Google Scholar]
- Schenk-Gröninger R., Becker J., Brendel M. Cloning, sequencing, and characterizing the Lactobacillus leichmannii pyrC gene encoding dihydroorotase. Biochimie. 1995;77(4):265–272. doi: 10.1016/0300-9084(96)88135-1. [DOI] [PubMed] [Google Scholar]
- Schwartz C. J., Sadowski P. D. FLP recombinase of the 2 microns circle plasmid of Saccharomyces cerevisiae bends its DNA target. Isolation of FLP mutants defective in DNA bending. J Mol Biol. 1989 Feb 20;205(4):647–658. doi: 10.1016/0022-2836(89)90310-0. [DOI] [PubMed] [Google Scholar]
- Segall A. M., Nash H. A. Architectural flexibility in lambda site-specific recombination: three alternate conformations channel the attL site into three distinct pathways. Genes Cells. 1996 May;1(5):453–463. doi: 10.1046/j.1365-2443.1996.d01-254.x. [DOI] [PubMed] [Google Scholar]
- Serre M. C., Jayaram M. Half-site strand transfer by step-arrest mutants of yeast site-specific recombinase Flp. J Mol Biol. 1992 Jun 5;225(3):643–649. doi: 10.1016/0022-2836(92)90391-v. [DOI] [PubMed] [Google Scholar]
- Serre M. C., Turlan C., Bortolin M., Chandler M. Mutagenesis of the IS1 transposase: importance of a His-Arg-Tyr triad for activity. J Bacteriol. 1995 Sep;177(17):5070–5077. doi: 10.1128/jb.177.17.5070-5077.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaikh A. C., Sadowski P. D. The Cre recombinase cleaves the lox site in trans. J Biol Chem. 1997 Feb 28;272(9):5695–5702. doi: 10.1074/jbc.272.9.5695. [DOI] [PubMed] [Google Scholar]
- Shoemaker N. B., Wang G. R., Salyers A. A. The Bacteroides mobilizable insertion element, NBU1, integrates into the 3' end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J Bacteriol. 1996 Jun;178(12):3594–3600. doi: 10.1128/jb.178.12.3594-3600.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirois S., Szatmari G. Detection of XerC and XerD recombinases in gram-negative bacteria of the family Enterobacteriaceae. J Bacteriol. 1995 Jul;177(14):4183–4186. doi: 10.1128/jb.177.14.4183-4186.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiers A. J., Sherratt D. J. Relating primary structure to function in the Escherichia coli XerD site-specific recombinase. Mol Microbiol. 1997 Jun;24(5):1071–1082. doi: 10.1046/j.1365-2958.1997.4171784.x. [DOI] [PubMed] [Google Scholar]
- Stark W. M., Boocock M. R., Sherratt D. J. Catalysis by site-specific recombinases. Trends Genet. 1992 Dec;8(12):432–439. [PubMed] [Google Scholar]
- Sternberg N., Sauer B., Hoess R., Abremski K. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol. 1986 Jan 20;187(2):197–212. doi: 10.1016/0022-2836(86)90228-7. [DOI] [PubMed] [Google Scholar]
- Su Y. A., Clewell D. B. Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 1993 Nov;30(3):234–250. doi: 10.1006/plas.1993.1055. [DOI] [PubMed] [Google Scholar]
- Subramanya H. S., Arciszewska L. K., Baker R. A., Bird L. E., Sherratt D. J., Wigley D. B. Crystal structure of the site-specific recombinase, XerD. EMBO J. 1997 Sep 1;16(17):5178–5187. doi: 10.1093/emboj/16.17.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J., Inouye M., Inouye S. Association of a retroelement with a P4-like cryptic prophage (retronphage phi R73) integrated into the selenocystyl tRNA gene of Escherichia coli. J Bacteriol. 1991 Jul;173(13):4171–4181. doi: 10.1128/jb.173.13.4171-4181.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thumm G., Olschläger T., Braun V. Plasmid pColBM-Cl139 does not encode a colicin lysis protein but contains sequences highly homologous to the D protein (resolvase) and the oriV region of the miniF plasmid. Plasmid. 1988 Jul;20(1):75–82. doi: 10.1016/0147-619x(88)90009-1. [DOI] [PubMed] [Google Scholar]
- Tirumalai R. S., Healey E., Landy A. The catalytic domain of lambda site-specific recombinase. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6104–6109. doi: 10.1073/pnas.94.12.6104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd J. W., Passarelli A. L., Lu A., Miller L. K. Factors regulating baculovirus late and very late gene expression in transient-expression assays. J Virol. 1996 Apr;70(4):2307–2317. doi: 10.1128/jvi.70.4.2307-2317.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toh-e A., Utatsu I. Physical and functional structure of a yeast plasmid, pSB3, isolated from Zygosaccharomyces bisporus. Nucleic Acids Res. 1985 Jun 25;13(12):4267–4283. doi: 10.1093/nar/13.12.4267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tojo N., Sanmiya K., Sugawara H., Inouye S., Komano T. Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein. J Bacteriol. 1996 Jul;178(14):4004–4011. doi: 10.1128/jb.178.14.4004-4011.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
- Topal M. D., Conrad M. Changing endonuclease EcoRII Tyr308 to Phe abolishes cleavage but not recognition: possible homology with the Int-family of recombinases. Nucleic Acids Res. 1993 Jun 11;21(11):2599–2603. doi: 10.1093/nar/21.11.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turlan C., Chandler M. IS1-mediated intramolecular rearrangements: formation of excised transposon circles and replicative deletions. EMBO J. 1995 Nov 1;14(21):5410–5421. doi: 10.1002/j.1460-2075.1995.tb00225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umeda M., Ohtsubo E. Four types of IS1 with differences in nucleotide sequence reside in the Escherichia coli K-12 chromosome. Gene. 1991 Feb 1;98(1):1–5. doi: 10.1016/0378-1119(91)90096-t. [DOI] [PubMed] [Google Scholar]
- Utatsu I., Sakamoto S., Imura T., Toh-e A. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level. J Bacteriol. 1987 Dec;169(12):5537–5545. doi: 10.1128/jb.169.12.5537-5545.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vrijbloed J. W., Madoń J., Dijkhuizen L. A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol. 1994 Nov;176(22):7087–7090. doi: 10.1128/jb.176.22.7087-7090.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wah D. A., Hirsch J. A., Dorner L. F., Schildkraut I., Aggarwal A. K. Structure of the multimodular endonuclease FokI bound to DNA. Nature. 1997 Jul 3;388(6637):97–100. doi: 10.1038/40446. [DOI] [PubMed] [Google Scholar]
- Walton D. K., Gendel S. M., Atherly A. G. Nucleotide sequence of the replication region of the Nostoc PCC 7524 plasmid pDU1. Nucleic Acids Res. 1992 Sep 11;20(17):4660–4660. doi: 10.1093/nar/20.17.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wierzbicki A., Kendall M., Abremski K., Hoess R. A mutational analysis of the bacteriophage P1 recombinase Cre. J Mol Biol. 1987 Jun 20;195(4):785–794. doi: 10.1016/0022-2836(87)90484-0. [DOI] [PubMed] [Google Scholar]
- Wolff G., Plante I., Lang B. F., Kück U., Burger G. Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. J Mol Biol. 1994 Mar 18;237(1):75–86. doi: 10.1006/jmbi.1994.1210. [DOI] [PubMed] [Google Scholar]
- Wu Z., Gumport R. I., Gardner J. F. Genetic analysis of second-site revertants of bacteriophage lambda integrase mutants. J Bacteriol. 1997 Jun;179(12):4030–4038. doi: 10.1128/jb.179.12.4030-4038.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagil E., Dolev S., Oberto J., Kislev N., Ramaiah N., Weisberg R. A. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J Mol Biol. 1989 Jun 20;207(4):695–717. doi: 10.1016/0022-2836(89)90238-6. [DOI] [PubMed] [Google Scholar]
- Ye Z. H., Buranen S. L., Lee C. Y. Sequence analysis and comparison of int and xis genes from staphylococcal bacteriophages L54a and phi 11. J Bacteriol. 1990 May;172(5):2568–2575. doi: 10.1128/jb.172.5.2568-2575.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Z. H., Lee C. Y. Nucleotide sequence and genetic characterization of staphylococcal bacteriophage L54a int and xis genes. J Bacteriol. 1989 Aug;171(8):4146–4153. doi: 10.1128/jb.171.8.4146-4153.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu A., Bertani L. E., Haggård-Ljungquist E. Control of prophage integration and excision in bacteriophage P2: nucleotide sequences of the int gene and att sites. Gene. 1989 Aug 1;80(1):1–11. doi: 10.1016/0378-1119(89)90244-8. [DOI] [PubMed] [Google Scholar]
- Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., Isono K., Mizobuchi K., Nakata A. Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305–3308. doi: 10.1093/nar/20.13.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Guchte M., Daly C., Fitzgerald G. F., Arendt E. K. Identification of int and attP on the genome of lactococcal bacteriophage Tuc2009 and their use for site-specific plasmid integration in the chromosome of Tuc2009-resistant Lactococcus lactis MG1363. Appl Environ Microbiol. 1994 Jul;60(7):2324–2329. doi: 10.1128/aem.60.7.2324-2329.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]