Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):537–543. doi: 10.1093/nar/26.2.537

Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern.

H Brulé 1, W M Holmes 1, G Keith 1, R Giegé 1, C Florentz 1
PMCID: PMC147281  PMID: 9421512

Abstract

Although the gene sequences of all 22 tRNAs encoded in the human mitochondrial genome are known, little information exists about their sequences at the RNA level. This becomes a crucial limitation when searching for a molecular understanding of the growing number of maternally inherited human diseases correlated with point mutations in tRNA genes. Here we describe the sequence of human mt-tRNAPropurified from placenta. It shows absence of editing events in this tRNA and highlights the presence of eight post-transcriptional modifications. These include T54, never found so far in an animal mt-tRNA, and m1G37, a modification known to have fundamental functional properties in a number of canonical tRNAs. Occurrence of m1G37 was further investigated in an analysis of the substrate properties of in vitro transcripts of human mt-tRNAProtowards pure Escherichia coli methylguanosine transferase. This enzyme properly methylates G37 in mt-tRNA and is sensitive to the presence of a second G at position 36, neighboring the target nucleotide for methylation. Since mutation of nt 36 was shown to be correlated with myopathy, the potential consequences of non-modification or under-modification of mt-tRNA nucleotides in expression of the particular myopathy and of mitochondrial diseases in general are discussed.

Full Text

The Full Text of this article is available as a PDF (120.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 1996;53:79–129. doi: 10.1016/s0079-6603(08)60143-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  3. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  4. Baranowski W., Tomaszewski J., Keith G. Unusual deficiency of the modified purine base queuine in transfer ribonucleic acid from the human placenta as tested by enzymatic assay. Am J Obstet Gynecol. 1993 Sep;169(3):581–582. doi: 10.1016/0002-9378(93)90626-t. [DOI] [PubMed] [Google Scholar]
  5. Becker H. D., Giegé R., Kern D. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Biochemistry. 1996 Jun 11;35(23):7447–7458. doi: 10.1021/bi9601058. [DOI] [PubMed] [Google Scholar]
  6. Björk G. R., Wikström P. M., Byström A. S. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science. 1989 May 26;244(4907):986–989. doi: 10.1126/science.2471265. [DOI] [PubMed] [Google Scholar]
  7. Byström A. S., Björk G. R. Chromosomal location and cloning of the gene (trmD) responsible for the synthesis of tRNA (m1G) methyltransferase in Escherichia coli K-12. Mol Gen Genet. 1982;188(3):440–446. doi: 10.1007/BF00330046. [DOI] [PubMed] [Google Scholar]
  8. Cavalier-Smith T. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci. 1987;503:55–71. doi: 10.1111/j.1749-6632.1987.tb40597.x. [DOI] [PubMed] [Google Scholar]
  9. England T. E., Bruce A. G., Uhlenbeck O. C. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. doi: 10.1016/s0076-6879(80)65011-3. [DOI] [PubMed] [Google Scholar]
  10. Gasnier F., Rousson R., Lermé F., Vaganay E., Louisot P., Gateau-Roesch O. Use of Percoll gradients for isolation of human placenta mitochondria suitable for investigating outer membrane proteins. Anal Biochem. 1993 Jul;212(1):173–178. doi: 10.1006/abio.1993.1309. [DOI] [PubMed] [Google Scholar]
  11. Giegé R., Puglisi J. D., Florentz C. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol. 1993;45:129–206. doi: 10.1016/s0079-6603(08)60869-7. [DOI] [PubMed] [Google Scholar]
  12. Grosjean H., Edqvist J., Stråby K. B., Giegé R. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol. 1996 Jan 12;255(1):67–85. doi: 10.1006/jmbi.1996.0007. [DOI] [PubMed] [Google Scholar]
  13. Grosjean H., Sprinzl M., Steinberg S. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995;77(1-2):139–141. doi: 10.1016/0300-9084(96)88117-x. [DOI] [PubMed] [Google Scholar]
  14. Gu X. R., Santi D. V. The T-arm of tRNA is a substrate for tRNA (m5U54)-methyltransferase. Biochemistry. 1991 Mar 26;30(12):2999–3002. doi: 10.1021/bi00226a003. [DOI] [PubMed] [Google Scholar]
  15. Gu X., Ivanetich K. M., Santi D. V. Recognition of the T-arm of tRNA by tRNA (m5U54)-methyltransferase is not sequence specific. Biochemistry. 1996 Sep 10;35(36):11652–11659. doi: 10.1021/bi9612125. [DOI] [PubMed] [Google Scholar]
  16. Hjalmarsson K. J., Byström A. S., Björk G. R. Purification and characterization of transfer RNA (guanine-1)methyltransferase from Escherichia coli. J Biol Chem. 1983 Jan 25;258(2):1343–1351. [PubMed] [Google Scholar]
  17. Holmes W. M., Andraos-Selim C., Roberts I., Wahab S. Z. Structural requirements for tRNA methylation. Action of Escherichia coli tRNA(guanosine-1)methyltransferase on tRNA(1Leu) structural variants. J Biol Chem. 1992 Jul 5;267(19):13440–13445. [PubMed] [Google Scholar]
  18. Keith G., Desgrès J., Pochart P., Heyman T., Kuo K. C., Gehrke C. W. Eukaryotic tRNAs(Pro): primary structure of the anticodon loop; presence of 5-carbamoylmethyluridine or inosine as the first nucleoside of the anticodon. Biochim Biophys Acta. 1990 Jul 30;1049(3):255–260. doi: 10.1016/0167-4781(90)90095-j. [DOI] [PubMed] [Google Scholar]
  19. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  20. Keith G. Optimization of conditions for labeling the 3' OH end of tRNA using T4 RNA ligase. Biochimie. 1983 Jun;65(6):367–370. doi: 10.1016/s0300-9084(83)80159-x. [DOI] [PubMed] [Google Scholar]
  21. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Larsson N. G., Clayton D. A. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet. 1995;29:151–178. doi: 10.1146/annurev.ge.29.120195.001055. [DOI] [PubMed] [Google Scholar]
  23. Lestienne P., Bataillé N. Mitochondrial DNA alterations and genetic diseases: a review. Biomed Pharmacother. 1994;48(5-6):199–214. doi: 10.1016/0753-3322(94)90134-1. [DOI] [PubMed] [Google Scholar]
  24. Liu H., Peterson R., Kessler J., Musier-Forsyth K. Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro. Nucleic Acids Res. 1995 Jan 11;23(1):165–169. doi: 10.1093/nar/23.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Masucci J. P., Schon E. A. tRNA processing in human mitochondrial disorders. Mol Biol Rep. 1995;22(2-3):187–193. doi: 10.1007/BF00988727. [DOI] [PubMed] [Google Scholar]
  26. Moraes C. T., Ciacci F., Bonilla E., Ionasescu V., Schon E. A., DiMauro S. A mitochondrial tRNA anticodon swap associated with a muscle disease. Nat Genet. 1993 Jul;4(3):284–288. doi: 10.1038/ng0793-284. [DOI] [PubMed] [Google Scholar]
  27. Muramatsu T., Nishikawa K., Nemoto F., Kuchino Y., Nishimura S., Miyazawa T., Yokoyama S. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature. 1988 Nov 10;336(6195):179–181. doi: 10.1038/336179a0. [DOI] [PubMed] [Google Scholar]
  28. Mörl M., Dörner M., Päbo S. C to U editing and modifications during the maturation of the mitochondrial tRNA(Asp) in marsupials. Nucleic Acids Res. 1995 Sep 11;23(17):3380–3384. doi: 10.1093/nar/23.17.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohtsuki T., Kawai G., Watanabe Y., Kita K., Nishikawa K., Watanabe K. Preparation of biologically active Ascaris suum mitochondrial tRNAMet with a TV-replacement loop by ligation of chemically synthesized RNA fragments. Nucleic Acids Res. 1996 Feb 15;24(4):662–667. doi: 10.1093/nar/24.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perret V., Garcia A., Grosjean H., Ebel J. P., Florentz C., Giegé R. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature. 1990 Apr 19;344(6268):787–789. doi: 10.1038/344787a0. [DOI] [PubMed] [Google Scholar]
  31. Perret V., Garcia A., Puglisi J., Grosjean H., Ebel J. P., Florentz C., Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie. 1990 Oct;72(10):735–743. doi: 10.1016/0300-9084(90)90158-d. [DOI] [PubMed] [Google Scholar]
  32. Pütz J., Florentz C., Benseler F., Giegé R. A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol. 1994 Sep;1(9):580–582. doi: 10.1038/nsb0994-580. [DOI] [PubMed] [Google Scholar]
  33. Quigley G. J., Seeman N. C., Wang A. H., Suddath F. L., Rich A. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles. Nucleic Acids Res. 1975 Dec;2(12):2329–2341. doi: 10.1093/nar/2.12.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Redlak M., Andraos-Selim C., Giege R., Florentz C., Holmes W. M. Interaction of tRNA with tRNA (guanosine-1)methyltransferase: binding specificity determinants involve the dinucleotide G36pG37 and tertiary structure. Biochemistry. 1997 Jul 22;36(29):8699–8709. doi: 10.1021/bi9701538. [DOI] [PubMed] [Google Scholar]
  35. Roe B. A. Studies on human tRNA. I. The rapid, large scale isolation and partial fractionation of placenta and liver tRNA. Nucleic Acids Res. 1975 Jan;2(1):21–42. doi: 10.1093/nar/2.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Romby P., Carbon P., Westhof E., Ehresmann C., Ebel J. P., Ehresmann B., Giegé R. Importance of conserved residues for the conformation of the T-loop in tRNAs. J Biomol Struct Dyn. 1987 Dec;5(3):669–687. doi: 10.1080/07391102.1987.10506419. [DOI] [PubMed] [Google Scholar]
  37. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  39. Silberklang M., Prochiantz A., Haenni A. L., Rajbhandary U. L. Studies on the sequence of the 3'-terminal region of turnip-yellow-mosaic-virus RNA. Eur J Biochem. 1977 Feb;72(3):465–478. doi: 10.1111/j.1432-1033.1977.tb11270.x. [DOI] [PubMed] [Google Scholar]
  40. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stanley J., Vassilenko S. A different approach to RNA sequencing. Nature. 1978 Jul 6;274(5666):87–89. doi: 10.1038/274087a0. [DOI] [PubMed] [Google Scholar]
  42. Sylvers L. A., Rogers K. C., Shimizu M., Ohtsuka E., Söll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry. 1993 Apr 20;32(15):3836–3841. doi: 10.1021/bi00066a002. [DOI] [PubMed] [Google Scholar]
  43. Tamura K., Himeno H., Asahara H., Hasegawa T., Shimizu M. In vitro study of E.coli tRNA(Arg) and tRNA(Lys) identity elements. Nucleic Acids Res. 1992 May 11;20(9):2335–2339. doi: 10.1093/nar/20.9.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vlassov V. V., Zuber G., Felden B., Behr J. P., Giegé R. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res. 1995 Aug 25;23(16):3161–3167. doi: 10.1093/nar/23.16.3161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
  46. Yokobori S. I., Päbo S. tRNA editing in metazoans. Nature. 1995 Oct 12;377(6549):490–490. doi: 10.1038/377490a0. [DOI] [PubMed] [Google Scholar]
  47. Yokobori S., Päbo S. Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA(Tyr). J Mol Biol. 1997 Jan 17;265(2):95–99. doi: 10.1006/jmbi.1996.0728. [DOI] [PubMed] [Google Scholar]
  48. de Bruijn M. H., Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire 'dihydrouridine' loop and stem. EMBO J. 1983;2(8):1309–1321. doi: 10.1002/j.1460-2075.1983.tb01586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES