Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):681–683. doi: 10.1093/nar/26.2.681

Random-priming in vitro recombination: an effective tool for directed evolution.

Z Shao 1, H Zhao 1, L Giver 1, F H Arnold 1
PMCID: PMC147287  PMID: 9421535

Abstract

A simple and efficient method for in vitro mutagenesis and recombination of polynucleotide sequences is reported. The method involves priming template polynucleotide(s) with random-sequence primers and extending to generate a pool of short DNA fragments which contain a controllable level of point mutations. The fragments are reassembled during cycles of denaturation, annealing and further enzyme-catalyzed DNA polymerization to produce a library of full-length sequences. Screening or selecting the expressed gene products leads to new variants with improved functions, as demonstrated by the recombination of genes encoding different thermostable subtilisins in order to obtain enzymes more stable than either parent.

Full Text

The Full Text of this article is available as a PDF (107.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  2. He M., Taussig M. J. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res. 1997 Dec 15;25(24):5132–5134. doi: 10.1093/nar/25.24.5132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kuchner O., Arnold F. H. Directed evolution of enzyme catalysts. Trends Biotechnol. 1997 Dec;15(12):523–530. doi: 10.1016/S0167-7799(97)01138-4. [DOI] [PubMed] [Google Scholar]
  4. Liu Z. Q., Wood C., Wu T. T. Nucleotide sequence of an anti-fluorescyl hapten antibody heavy chain variable region gene from a BALB/c mouse hybridoma cell line. Nucleic Acids Res. 1987 Aug 11;15(15):6296–6296. doi: 10.1093/nar/15.15.6296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Moore J. C., Arnold F. H. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol. 1996 Apr;14(4):458–467. doi: 10.1038/nbt0496-458. [DOI] [PubMed] [Google Scholar]
  6. Moore J. C., Jin H. M., Kuchner O., Arnold F. H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J Mol Biol. 1997 Sep 26;272(3):336–347. doi: 10.1006/jmbi.1997.1252. [DOI] [PubMed] [Google Scholar]
  7. Mörl M., Schmelzer C. Group II intron RNA-catalyzed recombination of RNA in vitro. Nucleic Acids Res. 1990 Nov 25;18(22):6545–6551. doi: 10.1093/nar/18.22.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shafikhani S., Siegel R. A., Ferrari E., Schellenberger V. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques. 1997 Aug;23(2):304–310. doi: 10.2144/97232rr01. [DOI] [PubMed] [Google Scholar]
  9. Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  11. Zhao H., Arnold F. H. Functional and nonfunctional mutations distinguished by random recombination of homologous genes. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7997–8000. doi: 10.1073/pnas.94.15.7997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zhao H., Arnold F. H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 1997 Mar 15;25(6):1307–1308. doi: 10.1093/nar/25.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES