Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):655–661. doi: 10.1093/nar/26.2.655

Three-dimensional structure of the yeast ribosome.

A Verschoor 1, J R Warner 1, S Srivastava 1, R A Grassucci 1, J Frank 1
PMCID: PMC147289  PMID: 9421530

Abstract

The 80S ribosome from Saccharomyces cerevisiae has been reconstructed from cryo electron micrographs to a resolution of 35 A. It is strikingly similar to the 70S ribosome from Escherichia coli, while displaying the characteristic eukaryotic features familiar from reconstructions of ribosomes from higher eukaryotes. Aside from the elaboration of a number of peripherally located features on the two subunits and greater overall size, the largest difference between the yeast and E.coli ribosomes is in a mass increase on one side of the large (60S) subunit. It thus appears more elliptical than the characteristically globular 50S subunit from E.coli. The interior of the 60S subunit reveals a variable diameter tunnel spanning the subunit between the interface canyon and a site on the lower back of the subunit, presumably the exit site through which the nascent polypeptide chain emerges from the ribosome.

Full Text

The Full Text of this article is available as a PDF (485.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alksne L. E., Anthony R. A., Liebman S. W., Warner J. R. An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9538–9541. doi: 10.1073/pnas.90.20.9538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baronas-Lowell D. M., Warner J. R. Ribosomal protein L30 is dispensable in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1990 Oct;10(10):5235–5243. doi: 10.1128/mcb.10.10.5235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böttcher B., Wynne S. A., Crowther R. A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature. 1997 Mar 6;386(6620):88–91. doi: 10.1038/386088a0. [DOI] [PubMed] [Google Scholar]
  4. Chakravarti D., Maiti T., Maitra U. Isolation and immunochemical characterization of eukaryotic translation initiation factor 5 from Saccharomyces cerevisiae. J Biol Chem. 1993 Mar 15;268(8):5754–5762. [PubMed] [Google Scholar]
  5. Crowley K. S., Reinhart G. D., Johnson A. E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell. 1993 Jun 18;73(6):1101–1115. doi: 10.1016/0092-8674(93)90640-c. [DOI] [PubMed] [Google Scholar]
  6. De Rijk P., Van de Peer Y., De Wachter R. Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res. 1996 Jan 1;24(1):92–97. doi: 10.1093/nar/24.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  8. Frank J., Verschoor A., Li Y., Zhu J., Lata R. K., Radermacher M., Penczek P., Grassucci R., Agrawal R. K., Srivastava S. A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):757–765. doi: 10.1139/o95-084. [DOI] [PubMed] [Google Scholar]
  9. Frank J., Zhu J., Penczek P., Li Y., Srivastava S., Verschoor A., Radermacher M., Grassucci R., Lata R. K., Agrawal R. K. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature. 1995 Aug 3;376(6539):441–444. doi: 10.1038/376441a0. [DOI] [PubMed] [Google Scholar]
  10. Huang H. K., Yoon H., Hannig E. M., Donahue T. F. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 1997 Sep 15;11(18):2396–2413. doi: 10.1101/gad.11.18.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. Penczek P. A., Grassucci R. A., Frank J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy. 1994 Mar;53(3):251–270. doi: 10.1016/0304-3991(94)90038-8. [DOI] [PubMed] [Google Scholar]
  13. Penczek P., Radermacher M., Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992 Jan;40(1):33–53. [PubMed] [Google Scholar]
  14. Srivastava S., Verschoor A., Radermacher M., Grassucci R., Frank J. Three-dimensional reconstruction of mammalian 40 S ribosomal subunit embedded in ice. J Mol Biol. 1995 Feb 3;245(5):461–466. doi: 10.1006/jmbi.1994.0037. [DOI] [PubMed] [Google Scholar]
  15. Stark H., Mueller F., Orlova E. V., Schatz M., Dube P., Erdemir T., Zemlin F., Brimacombe R., van Heel M. The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure. 1995 Aug 15;3(8):815–821. doi: 10.1016/s0969-2126(01)00216-7. [DOI] [PubMed] [Google Scholar]
  16. Takakura H., Tsunasawa S., Miyagi M., Warner J. R. NH2-terminal acetylation of ribosomal proteins of Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 15;267(8):5442–5445. [PubMed] [Google Scholar]
  17. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  18. Unser M., Trus B. L., Steven A. C. A new resolution criterion based on spectral signal-to-noise ratios. Ultramicroscopy. 1987;23(1):39–51. doi: 10.1016/0304-3991(87)90225-7. [DOI] [PubMed] [Google Scholar]
  19. Verschoor A., Frank J. Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol. 1990 Aug 5;214(3):737–749. doi: 10.1016/0022-2836(90)90289-X. [DOI] [PubMed] [Google Scholar]
  20. Verschoor A., Srivastava S., Grassucci R., Frank J. Native 3D structure of eukaryotic 80s ribosome: morphological homology with E. coli 70S ribosome. J Cell Biol. 1996 May;133(3):495–505. doi: 10.1083/jcb.133.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Verschoor A., Zhang N. Y., Wagenknecht T., Obrig T., Radermacher M., Frank J. Three-dimensional reconstruction of mammalian 40 S ribosomal subunit. J Mol Biol. 1989 Sep 5;209(1):115–126. doi: 10.1016/0022-2836(89)90175-7. [DOI] [PubMed] [Google Scholar]
  22. Wagenknecht T., Grassucci R., Frank J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J Mol Biol. 1988 Jan 5;199(1):137–147. doi: 10.1016/0022-2836(88)90384-1. [DOI] [PubMed] [Google Scholar]
  23. Warner J. R., Gorenstein C. The ribosomal proteins of Saccharomyces cerevisiae. Methods Cell Biol. 1978;20:45–60. doi: 10.1016/s0091-679x(08)62008-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES