Abstract
Photoactivated methylene blue was used to damage purified DNA and the mitochondrial DNA (mtDNA) of human fibroblasts in culture. The primary product of this reaction is the DNA lesion 7-hydro-8-oxo-deoxyguanosine (8-oxo-dG). The DNA damage was quantitated using Escherichia coli formamidopyrimidine DNA glycosylase (Fpg) in a gene-specific damage and repair assay. Assay conditions were refined to give incision at all enzyme-sensitive sites with minimal non-specific cutting. Cultured fibroblasts were exposed to photoactivated methylene blue under conditions that would produce an average of three oxidative lesions per double-stranded mitochondrial genome. Within 9 h, 47% of this damage had been removed by the cells. This removal was due to repair rather than to replication, cell loss or degradation of damaged genomes. The rate of repair was measured in both DNA strands of the frequently transcribed ribosomal region of the mitochondrial genome and in both strands of the non-ribosomal region. Fpg-sensitive alkali-resistant oxidative base damage was efficiently removed from human mtDNA with no differences in the rate of repair between strands or between two different regions of the genome that differ substantially with regard to transcriptional activity.
Full Text
The Full Text of this article is available as a PDF (187.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. T., Friedberg E. C. The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 1980 Feb 25;8(4):875–888. [PMC free article] [PubMed] [Google Scholar]
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Attardi G., Chomyn A., King M. P., Kruse B., Polosa P. L., Murdter N. N. Regulation of mitochondrial gene expression in mammalian cells. Biochem Soc Trans. 1990 Aug;18(4):509–513. doi: 10.1042/bst0180509. [DOI] [PubMed] [Google Scholar]
- Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
- Beckman K. B., Ames B. N. Detection and quantification of oxidative adducts of mitochondrial DNA. Methods Enzymol. 1996;264:442–453. doi: 10.1016/s0076-6879(96)64040-3. [DOI] [PubMed] [Google Scholar]
- Chikaraishi D. M., Buchanan L., Danna K. J., Harrington C. A. Genomic organization of rat rDNA. Nucleic Acids Res. 1983 Sep 24;11(18):6437–6452. doi: 10.1093/nar/11.18.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung M. H., Kiyosawa H., Ohtsuka E., Nishimura S., Kasai H. DNA strand cleavage at 8-hydroxyguanine residues by hot piperidine treatment. Biochem Biophys Res Commun. 1992 Oct 15;188(1):1–7. doi: 10.1016/0006-291x(92)92341-t. [DOI] [PubMed] [Google Scholar]
- Clayton D. A., Doda J. N., Friedberg E. C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2777–2781. doi: 10.1073/pnas.71.7.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper P. K., Nouspikel T., Clarkson S. G., Leadon S. A. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997 Feb 14;275(5302):990–993. doi: 10.1126/science.275.5302.990. [DOI] [PubMed] [Google Scholar]
- Croteau D. L., ap Rhys C. M., Hudson E. K., Dianov G. L., Hansford R. G., Bohr V. A. An oxidative damage-specific endonuclease from rat liver mitochondria. J Biol Chem. 1997 Oct 24;272(43):27338–27344. doi: 10.1074/jbc.272.43.27338. [DOI] [PubMed] [Google Scholar]
- Domena J. D., Timmer R. T., Dicharry S. A., Mosbaugh D. W. Purification and properties of mitochondrial uracil-DNA glycosylase from rat liver. Biochemistry. 1988 Sep 6;27(18):6742–6751. doi: 10.1021/bi00418a015. [DOI] [PubMed] [Google Scholar]
- Drapkin R., Sancar A., Reinberg D. Where transcription meets repair. Cell. 1994 Apr 8;77(1):9–12. doi: 10.1016/0092-8674(94)90228-3. [DOI] [PubMed] [Google Scholar]
- Driggers W. J., Grishko V. I., LeDoux S. P., Wilson G. L. Defective repair of oxidative damage in the mitochondrial DNA of a xeroderma pigmentosum group A cell line. Cancer Res. 1996 Mar 15;56(6):1262–1266. [PubMed] [Google Scholar]
- Driggers W. J., LeDoux S. P., Wilson G. L. Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J Biol Chem. 1993 Oct 15;268(29):22042–22045. [PubMed] [Google Scholar]
- Grollman A. P., Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993 Jul;9(7):246–249. doi: 10.1016/0168-9525(93)90089-z. [DOI] [PubMed] [Google Scholar]
- Higuchi Y., Linn S. Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem. 1995 Apr 7;270(14):7950–7956. doi: 10.1074/jbc.270.14.7950. [DOI] [PubMed] [Google Scholar]
- Horai S., Hayasaka K. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet. 1990 Apr;46(4):828–842. [PMC free article] [PubMed] [Google Scholar]
- Kouchakdjian M., Bodepudi V., Shibutani S., Eisenberg M., Johnson F., Grollman A. P., Patel D. J. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn).dA(anti) alignment at lesion site. Biochemistry. 1991 Feb 5;30(5):1403–1412. doi: 10.1021/bi00219a034. [DOI] [PubMed] [Google Scholar]
- LeDoux S. P., Wilson G. L., Beecham E. J., Stevnsner T., Wassermann K., Bohr V. A. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis. 1992 Nov;13(11):1967–1973. doi: 10.1093/carcin/13.11.1967. [DOI] [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers K. A., Saffhill R., O'Connor P. J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis. 1988 Feb;9(2):285–292. doi: 10.1093/carcin/9.2.285. [DOI] [PubMed] [Google Scholar]
- Okumoto D. S., Bohr V. A. DNA repair in the metallothionein gene increases with transcriptional activation. Nucleic Acids Res. 1987 Dec 10;15(23):10021–10030. doi: 10.1093/nar/15.23.10021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettepher C. C., LeDoux S. P., Bohr V. A., Wilson G. L. Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem. 1991 Feb 15;266(5):3113–3117. [PubMed] [Google Scholar]
- Pinz K. G., Shibutani S., Bogenhagen D. F. Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J Biol Chem. 1995 Apr 21;270(16):9202–9206. doi: 10.1074/jbc.270.16.9202. [DOI] [PubMed] [Google Scholar]
- Richter C. Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol. 1995 Jul;27(7):647–653. doi: 10.1016/1357-2725(95)00025-k. [DOI] [PubMed] [Google Scholar]
- Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sass M. D., Caruso C. J., Axelrod D. R. Accumulation of methylene blue by metabolizing erythrocytes. J Lab Clin Med. 1967 Mar;69(3):447–455. [PubMed] [Google Scholar]
- Satoh M. S., Huh N., Rajewsky M. F., Kuroki T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J Biol Chem. 1988 May 15;263(14):6854–6856. [PubMed] [Google Scholar]
- Schneider J. E., Price S., Maidt L., Gutteridge J. M., Floyd R. A. Methylene blue plus light mediates 8-hydroxy 2'-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res. 1990 Feb 11;18(3):631–635. doi: 10.1093/nar/18.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scragg M. A., Ferreira L. R. Evaluation of different staining procedures for the quantification of fibroblasts cultured in 96-well plates. Anal Biochem. 1991 Oct;198(1):80–85. doi: 10.1016/0003-2697(91)90509-r. [DOI] [PubMed] [Google Scholar]
- Shen C. C., Wertelecki W., Driggers W. J., LeDoux S. P., Wilson G. L. Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mutat Res. 1995 Jul;337(1):19–23. doi: 10.1016/0921-8777(95)00008-8. [DOI] [PubMed] [Google Scholar]
- Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
- Singh G., Maniccia-Bozzo E. Evidence for lack of mitochondrial DNA repair following cis-dichlorodiammineplatinum treatment. Cancer Chemother Pharmacol. 1990;26(2):97–100. doi: 10.1007/BF02897252. [DOI] [PubMed] [Google Scholar]
- Singh G., Sharkey S. M., Moorehead R. Mitochondrial DNA damage by anticancer agents. Pharmacol Ther. 1992;54(2):217–230. doi: 10.1016/0163-7258(92)90033-v. [DOI] [PubMed] [Google Scholar]
- Snyderwine E. G., Bohr V. A. Gene- and strand-specific damage and repair in Chinese hamster ovary cells treated with 4-nitroquinoline 1-oxide. Cancer Res. 1992 Aug 1;52(15):4183–4189. [PubMed] [Google Scholar]
- Taffe B. G., Larminat F., Laval J., Croteau D. L., Anson R. M., Bohr V. A. Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutat Res. 1996 Dec 2;364(3):183–192. doi: 10.1016/s0921-8777(96)00031-6. [DOI] [PubMed] [Google Scholar]
- Tchou J., Bodepudi V., Shibutani S., Antoshechkin I., Miller J., Grollman A. P., Johnson F. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J Biol Chem. 1994 May 27;269(21):15318–15324. [PubMed] [Google Scholar]
- Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4690–4694. doi: 10.1073/pnas.88.11.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thyagarajan B., Padua R. A., Campbell C. Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem. 1996 Nov 1;271(44):27536–27543. doi: 10.1074/jbc.271.44.27536. [DOI] [PubMed] [Google Scholar]
- Tomkinson A. E., Bonk R. T., Kim J., Bartfeld N., Linn S. Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res. 1990 Feb 25;18(4):929–935. doi: 10.1093/nar/18.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomkinson A. E., Bonk R. T., Linn S. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J Biol Chem. 1988 Sep 5;263(25):12532–12537. [PubMed] [Google Scholar]
- Yakes F. M., Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):514–519. doi: 10.1073/pnas.94.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]