Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):582–587. doi: 10.1093/nar/26.2.582

Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA.

H Kuhn 1, V V Demidov 1, M D Frank-Kamenetskii 1, P E Nielsen 1
PMCID: PMC147306  PMID: 9421519

Abstract

Strand displacement binding kinetics of cationic pseudoisocytosine-containing linked homopyrimidine peptide nucleic acids (bis-PNAs) to fully matched and singly mismatched decapurine targets in double-stranded DNA (dsDNA) are reported. PNA-dsDNA complex formation was monitored by gel mobility shift assay and pseudo-first order kinetics of binding was obeyed in all cases studied. The kinetic specificity of PNA binding to dsDNA, defined as the ratio of the initial rates of binding to matched and mismatched targets, increases with increasing ionic strength, whereas the apparent rate constant for bis-PNA-dsDNA complex formation decreases exponentially. Surprisingly, at very low ionic strength two equally charged bis-PNAs which have the same sequence of nucleobases but different linkers and consequently different locations of three positive charges differ in their specificity of binding by one order of magnitude. Under appropriate experimental conditions the kinetic specificity for bis-PNA targeting of dsDNA is as high as 300. Thus multiply charged cationic bis-PNAs containing pseudoisocytosines (J bases) in the Hoogsteen strand combined with enhanced binding affinity also exhibit very high sequence specificity, thereby making such reagents extremely efficient for sequence-specific targeting of duplex DNA.

Full Text

The Full Text of this article is available as a PDF (123.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentin T., Nielsen P. E. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics. Biochemistry. 1996 Jul 9;35(27):8863–8869. doi: 10.1021/bi960436k. [DOI] [PubMed] [Google Scholar]
  2. Boffa L. C., Carpaneto E. M., Allfrey V. G. Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1901–1905. doi: 10.1073/pnas.92.6.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherny D. Y., Belotserkovskii B. P., Frank-Kamenetskii M. D., Egholm M., Buchardt O., Berg R. H., Nielsen P. E. DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1667–1670. doi: 10.1073/pnas.90.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., Egholm M., Buchardt O., Nielsen P. E., Coull J. Solid-phase synthesis of peptide nucleic acids. J Pept Sci. 1995 May-Jun;1(3):175–183. doi: 10.1002/psc.310010304. [DOI] [PubMed] [Google Scholar]
  5. Corey D. R. Peptide nucleic acids: expanding the scope of nucleic acid recognition. Trends Biotechnol. 1997 Jun;15(6):224–229. doi: 10.1016/S0167-7799(97)01037-8. [DOI] [PubMed] [Google Scholar]
  6. Demidov V. V., Cherny D. I., Kurakin A. V., Yavnilovich M. V., Malkov V. A., Frank-Kamenetskii M. D., Sönnichsen S. H., Nielsen P. E. Electron microscopy mapping of oligopurine tracts in duplex DNA by peptide nucleic acid targeting. Nucleic Acids Res. 1994 Dec 11;22(24):5218–5222. doi: 10.1093/nar/22.24.5218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demidov V. V., Yavnilovich M. V., Belotserkovskii B. P., Frank-Kamenetskii M. D., Nielsen P. E. Kinetics and mechanism of polyamide ("peptide") nucleic acid binding to duplex DNA. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2637–2641. doi: 10.1073/pnas.92.7.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demidov V., Frank-Kamenetskii M. D., Egholm M., Buchardt O., Nielsen P. E. Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res. 1993 May 11;21(9):2103–2107. doi: 10.1093/nar/21.9.2103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eaton B. E., Gold L., Zichi D. A. Let's get specific: the relationship between specificity and affinity. Chem Biol. 1995 Oct;2(10):633–638. doi: 10.1016/1074-5521(95)90023-3. [DOI] [PubMed] [Google Scholar]
  10. Egholm M., Christensen L., Dueholm K. L., Buchardt O., Coull J., Nielsen P. E. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995 Jan 25;23(2):217–222. doi: 10.1093/nar/23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Footer M., Egholm M., Kron S., Coull J. M., Matsudaira P. Biochemical evidence that a D-loop is part of a four-stranded PNA-DNA bundle. Nickel-mediated cleavage of duplex DNA by a Gly-Gly-His bis-PNA. Biochemistry. 1996 Aug 20;35(33):10673–10679. doi: 10.1021/bi960486p. [DOI] [PubMed] [Google Scholar]
  12. Good L., Nielsen P. E. Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev. 1997 Aug;7(4):431–437. doi: 10.1089/oli.1.1997.7.431. [DOI] [PubMed] [Google Scholar]
  13. Gottesfeld J. M., Neely L., Trauger J. W., Baird E. E., Dervan P. B. Regulation of gene expression by small molecules. Nature. 1997 May 8;387(6629):202–205. doi: 10.1038/387202a0. [DOI] [PubMed] [Google Scholar]
  14. Herschlag D. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn't always better. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6921–6925. doi: 10.1073/pnas.88.16.6921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kool Eric T. Preorganization of DNA: Design Principles for Improving Nucleic Acid Recognition by Synthetic Oligonucleotides. Chem Rev. 1997 Aug 5;97(5):1473–1488. doi: 10.1021/cr9603791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kutyavin I. V., Rhinehart R. L., Lukhtanov E. A., Gorn V. V., Meyer R. B., Jr, Gamper H. B., Jr Oligonucleotides containing 2-aminoadenine and 2-thiothymine act as selectively binding complementary agents. Biochemistry. 1996 Aug 27;35(34):11170–11176. doi: 10.1021/bi960626v. [DOI] [PubMed] [Google Scholar]
  17. Møllegaard N. E., Buchardt O., Egholm M., Nielsen P. E. Peptide nucleic acid.DNA strand displacement loops as artificial transcription promoters. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3892–3895. doi: 10.1073/pnas.91.9.3892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res. 1993 Jan 25;21(2):197–200. doi: 10.1093/nar/21.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  20. Nielsen P. E., Egholm M., Buchardt O. Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J Mol Recognit. 1994 Sep;7(3):165–170. doi: 10.1002/jmr.300070303. [DOI] [PubMed] [Google Scholar]
  21. Nielsen P. E., Egholm M., Buchardt O. Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene. 1994 Nov 4;149(1):139–145. doi: 10.1016/0378-1119(94)90422-7. [DOI] [PubMed] [Google Scholar]
  22. Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B. P., Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994 Sep 30;265(5181):2085–2088. doi: 10.1126/science.7522346. [DOI] [PubMed] [Google Scholar]
  23. Peffer N. J., Hanvey J. C., Bisi J. E., Thomson S. A., Hassman C. F., Noble S. A., Babiss L. E. Strand-invasion of duplex DNA by peptide nucleic acid oligomers. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10648–10652. doi: 10.1073/pnas.90.22.10648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smulevitch S. V., Simmons C. G., Norton J. C., Wise T. W., Corey D. R. Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge. Nat Biotechnol. 1996 Dec;14(13):1700–1704. doi: 10.1038/nbt1296-1700. [DOI] [PubMed] [Google Scholar]
  25. Trauger J. W., Baird E. E., Dervan P. B. Recognition of DNA by designed ligands at subnanomolar concentrations. Nature. 1996 Aug 8;382(6591):559–561. doi: 10.1038/382559a0. [DOI] [PubMed] [Google Scholar]
  26. Veselkov A. G., Demidov V. V., Frank-Kamenetskii M. D., Nielsen P. E. PNA as a rare genome-cutter. Nature. 1996 Jan 18;379(6562):214–214. doi: 10.1038/379214a0. [DOI] [PubMed] [Google Scholar]
  27. Veselkov A. G., Demidov V. V., Nielson P. E., Frank-Kamenetskii M. D. A new class of genome rare cutters. Nucleic Acids Res. 1996 Jul 1;24(13):2483–2487. doi: 10.1093/nar/24.13.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wetmur J. G. DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol. 1991;26(3-4):227–259. doi: 10.3109/10409239109114069. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES