Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 1;26(3):761–767. doi: 10.1093/nar/26.3.761

Matrix attachment regions and structural colinearity in the genomes of two grass species.

Z Avramova 1, A Tikhonov 1, M Chen 1, J L Bennetzen 1
PMCID: PMC147314  PMID: 9443968

Abstract

In order to gain insights into the relationship between spatial organization of the genome and genome function we have initiated studies of the co-linear Sh2/A1- homologous regions of rice (30 kb) and sorghum (50 kb). We have identified the locations of matrix attachment regions (MARs) in these homologous chromosome segments, which could serve as anchors for individual structural units or loops. Despite the fact that the nucleotide sequences serving as MARs were not detectably conserved, the general organizational patterns of MARs relative to the neighboring genes were preserved. All identified genes were placed in individual loops that were of comparable size for homologous genes. Hence, gene composition, gene orientation, gene order and the placement of genes into structural units has been evolutionarily conserved in this region. Our analysis demonstrated that the occurrence of various 'MAR motifs' is not indicative of MAR location. However, most of the MARs discovered in the two genomic regions were found to co-localize with miniature inverted repeat transposable elements (MITEs), suggesting that MITEs preferentially insert near MARs and/or that they can serve as MARs.

Full Text

The Full Text of this article is available as a PDF (185.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  2. Allen G. C., Hall G. E., Jr, Childs L. C., Weissinger A. K., Spiker S., Thompson W. F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell. 1993 Jun;5(6):603–613. doi: 10.1105/tpc.5.6.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen G. C., Hall G., Jr, Michalowski S., Newman W., Spiker S., Weissinger A. K., Thompson W. F. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell. 1996 May;8(5):899–913. doi: 10.1105/tpc.8.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avramova Z., Bennetzen J. L. Isolation of matrices from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adh1 gene. Plant Mol Biol. 1993 Sep;22(6):1135–1143. doi: 10.1007/BF00028982. [DOI] [PubMed] [Google Scholar]
  5. Avramova Z., SanMiguel P., Georgieva E., Bennetzen J. L. Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell. 1995 Oct;7(10):1667–1680. doi: 10.1105/tpc.7.10.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Avramova Z., Tikhonov A., SanMiguel P., Jin Y. K., Liu C., Woo S. S., Wing R. A., Bennetzen J. L. Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J. 1996 Dec;10(6):1163–1168. doi: 10.1046/j.1365-313x.1996.10061163.x. [DOI] [PubMed] [Google Scholar]
  7. Bianchi M. E., Beltrame M., Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science. 1989 Feb 24;243(4894 Pt 1):1056–1059. doi: 10.1126/science.2922595. [DOI] [PubMed] [Google Scholar]
  8. Bode J., Kohwi Y., Dickinson L., Joh T., Klehr D., Mielke C., Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science. 1992 Jan 10;255(5041):195–197. doi: 10.1126/science.1553545. [DOI] [PubMed] [Google Scholar]
  9. Bonifer C., Hecht A., Saueressig H., Winter D. M., Sippel A. E. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci. J Cell Biochem. 1991 Oct;47(2):99–108. doi: 10.1002/jcb.240470203. [DOI] [PubMed] [Google Scholar]
  10. Boulikas T. Chromatin domains and prediction of MAR sequences. Int Rev Cytol. 1995;162A:279–388. doi: 10.1016/s0074-7696(08)61234-6. [DOI] [PubMed] [Google Scholar]
  11. Breyne P., van Montagu M., Depicker N., Gheysen G. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell. 1992 Apr;4(4):463–471. doi: 10.1105/tpc.4.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brun C., Dang Q., Miassod R. Studies of an 800-kilobase DNA stretch of the Drosophila X chromosome: comapping of a subclass of scaffold-attached regions with sequences able to replicate autonomously in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Oct;10(10):5455–5463. doi: 10.1128/mcb.10.10.5455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen M., Bennetzen J. L. Sequence composition and organization in the Sh2/A1-homologous region of rice. Plant Mol Biol. 1996 Dec;32(6):999–1001. doi: 10.1007/BF00041383. [DOI] [PubMed] [Google Scholar]
  14. Chen M., SanMiguel P., de Oliveira A. C., Woo S. S., Zhang H., Wing R. A., Bennetzen J. L. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3431–3435. doi: 10.1073/pnas.94.7.3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chinn A. M., Comai L. The heat shock cognate 80 gene of tomato is flanked by matrix attachment regions. Plant Mol Biol. 1996 Dec;32(5):959–968. doi: 10.1007/BF00020492. [DOI] [PubMed] [Google Scholar]
  16. Civardi L., Xia Y., Edwards K. J., Schnable P. S., Nikolau B. J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8268–8272. doi: 10.1073/pnas.91.17.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cockerill P. N., Garrard W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell. 1986 Jan 31;44(2):273–282. doi: 10.1016/0092-8674(86)90761-0. [DOI] [PubMed] [Google Scholar]
  18. Cockerill P. N. Nuclear matrix attachment occurs in several regions of the IgH locus. Nucleic Acids Res. 1990 May 11;18(9):2643–2648. doi: 10.1093/nar/18.9.2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dijkwel P. A., Hamlin J. L. Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells. Mol Cell Biol. 1988 Dec;8(12):5398–5409. doi: 10.1128/mcb.8.12.5398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dunford R. P., Kurata N., Laurie D. A., Money T. A., Minobe Y., Moore G. Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res. 1995 Jul 25;23(14):2724–2728. doi: 10.1093/nar/23.14.2724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Galliano H., Müller A. E., Lucht J. M., Meyer P. The transformation booster sequence from Petunia hybrida is a retrotransposon derivative that binds to the nuclear scaffold. Mol Gen Genet. 1995 Jun 10;247(5):614–622. doi: 10.1007/BF00290353. [DOI] [PubMed] [Google Scholar]
  22. Gasser S. M., Laemmli U. K. The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO J. 1986 Mar;5(3):511–518. doi: 10.1002/j.1460-2075.1986.tb04240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Homberger H. P. Bent DNA is a structural feature of scaffold-attached regions in Drosophila melanogaster interphase nuclei. Chromosoma. 1989 Aug;98(2):99–104. doi: 10.1007/BF00291044. [DOI] [PubMed] [Google Scholar]
  24. Iarovaia O., Hancock R., Lagarkova M., Miassod R., Razin S. V. Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome by the topoisomerase II-mediated DNA loop excision protocol. Mol Cell Biol. 1996 Jan;16(1):302–308. doi: 10.1128/mcb.16.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ivanchenko M., Avramova Z. Interaction of MAR-sequences with nuclear matrix proteins. J Cell Biochem. 1992 Oct;50(2):190–200. doi: 10.1002/jcb.240500209. [DOI] [PubMed] [Google Scholar]
  26. Kay V., Bode J. Binding specificity of a nuclear scaffold: supercoiled, single-stranded, and scaffold-attached-region DNA. Biochemistry. 1994 Jan 11;33(1):367–374. doi: 10.1021/bi00167a047. [DOI] [PubMed] [Google Scholar]
  27. Kilian A., Kudrna D. A., Kleinhofs A., Yano M., Kurata N., Steffenson B., Sasaki T. Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res. 1995 Jul 25;23(14):2729–2733. doi: 10.1093/nar/23.14.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kohwi-Shigematsu T., Kohwi Y. Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry. 1990 Oct 16;29(41):9551–9560. doi: 10.1021/bi00493a009. [DOI] [PubMed] [Google Scholar]
  29. Käs E., Izaurralde E., Laemmli U. K. Specific inhibition of DNA binding to nuclear scaffolds and histone H1 by distamycin. The role of oligo(dA).oligo(dT) tracts. J Mol Biol. 1989 Dec 5;210(3):587–599. doi: 10.1016/0022-2836(89)90134-4. [DOI] [PubMed] [Google Scholar]
  30. McKnight R. A., Shamay A., Sankaran L., Wall R. J., Hennighausen L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6943–6947. doi: 10.1073/pnas.89.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mielke C., Kohwi Y., Kohwi-Shigematsu T., Bode J. Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry. 1990 Aug 14;29(32):7475–7485. doi: 10.1021/bi00484a017. [DOI] [PubMed] [Google Scholar]
  32. Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
  33. Mirkovitch J., Spierer P., Laemmli U. K. Genes and loops in 320,000 base-pairs of the Drosophila melanogaster chromosome. J Mol Biol. 1986 Jul 20;190(2):255–258. doi: 10.1016/0022-2836(86)90296-2. [DOI] [PubMed] [Google Scholar]
  34. Mlynarova L., Jansen R. C., Conner A. J., Stiekema W. J., Nap J. P. The MAR-Mediated Reduction in Position Effect Can Be Uncoupled from Copy Number-Dependent Expression in Transgenic Plants. Plant Cell. 1995 May;7(5):599–609. doi: 10.1105/tpc.7.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mlynarova L., Loonen A., Heldens J., Jansen R. C., Keizer P., Stiekema W. J., Nap J. P. Reduced Position Effect in Mature Transgenic Plants Conferred by the Chicken Lysozyme Matrix-Associated Region. Plant Cell. 1994 Mar;6(3):417–426. doi: 10.1105/tpc.6.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orgel L. E., Crick F. H. Selfish DNA: the ultimate parasite. Nature. 1980 Apr 17;284(5757):604–607. doi: 10.1038/284604a0. [DOI] [PubMed] [Google Scholar]
  37. Phi-Van L., von Kries J. P., Ostertag W., Strätling W. H. The chicken lysozyme 5' matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol. 1990 May;10(5):2302–2307. doi: 10.1128/mcb.10.5.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  39. Spitzner J. R., Muller M. T. A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res. 1988 Jun 24;16(12):5533–5556. doi: 10.1093/nar/16.12.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Springer P. S., Edwards K. J., Bennetzen J. L. DNA class organization on maize Adh1 yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):863–867. doi: 10.1073/pnas.91.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stief A., Winter D. M., Strätling W. H., Sippel A. E. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature. 1989 Sep 28;341(6240):343–345. doi: 10.1038/341343a0. [DOI] [PubMed] [Google Scholar]
  42. Surdej P., Got C., Rosset R., Miassod R. Supragenic loop organization: mapping in Drosophila embryos, of scaffold-associated regions on a 800 kilobase DNA continuum cloned from the 14B-15B first chromosome region. Nucleic Acids Res. 1990 Jul 11;18(13):3713–3722. doi: 10.1093/nar/18.13.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang B., Dickinson L. A., Koivunen E., Ruoslahti E., Kohwi-Shigematsu T. A novel matrix attachment region DNA binding motif identified using a random phage peptide library. J Biol Chem. 1995 Oct 6;270(40):23239–23242. doi: 10.1074/jbc.270.40.23239. [DOI] [PubMed] [Google Scholar]
  44. Wessler S. R., Bureau T. E., White S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995 Dec;5(6):814–821. doi: 10.1016/0959-437x(95)80016-x. [DOI] [PubMed] [Google Scholar]
  45. Xu X., Hsia A. P., Zhang L., Nikolau B. J., Schnable P. S. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell. 1995 Dec;7(12):2151–2161. doi: 10.1105/tpc.7.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van Drunen C. M., Oosterling R. W., Keultjes G. M., Weisbeek P. J., van Driel R., Smeekens S. C. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Res. 1997 Oct 1;25(19):3904–3911. doi: 10.1093/nar/25.19.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. von Kries J. P., Phi-Van L., Diekmann S., Strätling W. H. A non-curved chicken lysozyme 5' matrix attachment site is 3' followed by a strongly curved DNA sequence. Nucleic Acids Res. 1990 Jul 11;18(13):3881–3885. doi: 10.1093/nar/18.13.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES