Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 1;26(3):816–823. doi: 10.1093/nar/26.3.816

Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.

C E Pearson 1, Y H Wang 1, J D Griffith 1, R R Sinden 1
PMCID: PMC147324  PMID: 9443975

Abstract

The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures.

Full Text

The Full Text of this article is available as a PDF (573.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barceló J. M., Mahadevan M. S., Tsilfidis C., MacKenzie A. E., Korneluk R. G. Intergenerational stability of the myotonic dystrophy protomutation. Hum Mol Genet. 1993 Jun;2(6):705–709. doi: 10.1093/hmg/2.6.705. [DOI] [PubMed] [Google Scholar]
  2. Belotserkovskii B. P., Johnston B. H. Polypropylene tube surfaces may induce denaturation and multimerization of DNA. Science. 1996 Jan 12;271(5246):222–223. doi: 10.1126/science.271.5246.222. [DOI] [PubMed] [Google Scholar]
  3. Bowater R. P., Rosche W. A., Jaworski A., Sinden R. R., Wells R. D. Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids. J Mol Biol. 1996 Nov 22;264(1):82–96. doi: 10.1006/jmbi.1996.0625. [DOI] [PubMed] [Google Scholar]
  4. Chastain P. D., 2nd, Eichler E. E., Kang S., Nelson D. L., Levene S. D., Sinden R. R. Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. Biochemistry. 1995 Dec 12;34(49):16125–16131. doi: 10.1021/bi00049a027. [DOI] [PubMed] [Google Scholar]
  5. Coggins L. W., O'Prey M., Akhter S. Intrahelical pseudoknots and interhelical associations mediated by mispaired human minisatellite DNA sequences in vitro. Gene. 1992 Nov 16;121(2):279–285. doi: 10.1016/0378-1119(92)90132-9. [DOI] [PubMed] [Google Scholar]
  6. Coggins L. W., O'Prey M. DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences. Nucleic Acids Res. 1989 Sep 25;17(18):7417–7426. doi: 10.1093/nar/17.18.7417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delwart E. L., Shpaer E. G., Louwagie J., McCutchan F. E., Grez M., Rübsamen-Waigmann H., Mullins J. I. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science. 1993 Nov 19;262(5137):1257–1261. doi: 10.1126/science.8235655. [DOI] [PubMed] [Google Scholar]
  8. Fishel R., Kolodner R. D. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev. 1995 Jun;5(3):382–395. doi: 10.1016/0959-437x(95)80055-7. [DOI] [PubMed] [Google Scholar]
  9. Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
  10. Gaillard C., Strauss F. Association of poly(CA).poly(TG) DNA fragments into four-stranded complexes bound by HMG1 and 2. Science. 1994 Apr 15;264(5157):433–436. doi: 10.1126/science.8153633. [DOI] [PubMed] [Google Scholar]
  11. Griffith J. D., Christiansen G. Electron microscope visualization of chromatin and other DNA-protein complexes. Annu Rev Biophys Bioeng. 1978;7:19–35. doi: 10.1146/annurev.bb.07.060178.000315. [DOI] [PubMed] [Google Scholar]
  12. Hanvey J. C., Shimizu M., Wells R. D. Intramolecular DNA triplexes in supercoiled plasmids. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6292–6296. doi: 10.1073/pnas.85.17.6292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsieh C. H., Griffith J. D. Deletions of bases in one strand of duplex DNA, in contrast to single-base mismatches, produce highly kinked molecules: possible relevance to the folding of single-stranded nucleic acids. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4833–4837. doi: 10.1073/pnas.86.13.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
  15. Lilley D. M. Kinking of DNA and RNA by base bulges. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7140–7142. doi: 10.1073/pnas.92.16.7140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barceló J., O'Hoy K. Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science. 1992 Mar 6;255(5049):1253–1255. doi: 10.1126/science.1546325. [DOI] [PubMed] [Google Scholar]
  17. Mariappan S. V., Garcoa A. E., Gupta G. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Res. 1996 Feb 15;24(4):775–783. doi: 10.1093/nar/24.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997 Jun 15;25(12):2245–2254. doi: 10.1093/nar/25.12.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pearson C. E., Ewel A., Acharya S., Fishel R. A., Sinden R. R. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum Mol Genet. 1997 Jul;6(7):1117–1123. doi: 10.1093/hmg/6.7.1117. [DOI] [PubMed] [Google Scholar]
  20. Pearson C. E., Ruiz M. T., Price G. B., Zannis-Hadjopoulos M. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry. 1994 Nov 29;33(47):14185–14196. doi: 10.1021/bi00251a030. [DOI] [PubMed] [Google Scholar]
  21. Pearson C. E., Sinden R. R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry. 1996 Apr 16;35(15):5041–5053. doi: 10.1021/bi9601013. [DOI] [PubMed] [Google Scholar]
  22. Pearson C. E., Zannis-Hadjopoulos M., Price G. B., Zorbas H. A novel type of interaction between cruciform DNA and a cruciform binding protein from HeLa cells. EMBO J. 1995 Apr 3;14(7):1571–1580. doi: 10.1002/j.1460-2075.1995.tb07143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Petruska J., Arnheim N., Goodman M. F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res. 1996 Jun 1;24(11):1992–1998. doi: 10.1093/nar/24.11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Richards R. I., Sutherland G. R. Dynamic mutations: a new class of mutations causing human disease. Cell. 1992 Sep 4;70(5):709–712. doi: 10.1016/0092-8674(92)90302-s. [DOI] [PubMed] [Google Scholar]
  25. Wang Y. H., Griffith J. Effects of bulge composition and flanking sequence on the kinking of DNA by bulged bases. Biochemistry. 1991 Feb 5;30(5):1358–1363. doi: 10.1021/bi00219a028. [DOI] [PubMed] [Google Scholar]
  26. Yamagata H., Miki T., Sakoda S., Yamanaka N., Davies J., Shelbourne P., Kubota R., Takenaga S., Nakagawa M., Ogihara T. Detection of a premutation in Japanese myotonic dystrophy. Hum Mol Genet. 1994 May;3(5):819–820. doi: 10.1093/hmg/3.5.819. [DOI] [PubMed] [Google Scholar]
  27. Zheng M., Huang X., Smith G. K., Yang X., Gao X. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. J Mol Biol. 1996 Nov 29;264(2):323–336. doi: 10.1006/jmbi.1996.0643. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES