Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 1;26(3):768–777. doi: 10.1093/nar/26.3.768

A novel UV-damaged DNA binding protein emerges during the chromatin-eliminating cleavage period in Ascaris suum.

C Seidl 1, K B Moritz 1
PMCID: PMC147329  PMID: 9443969

Abstract

During the early cleavage period of Ascaris suum , chromatin diminution takes place in the somatic founder cells. In the process of chromatin diminution numerous heterochromatic blocks, consisting predominantly of highly repeated DNA, are discarded during mitotic anaphase and are later on digested in the cytoplasm. Very little is known about proteins that are involved in chromatin diminution. We have detected a nuclear protein and purified it to near homogeneity by its preferential binding to UV-damaged DNA. We termed this protein chromatin diminution associated factor 1 (CDAF1), because maximum binding activity per nucleus was observed to develop in 4-8-cell stages, when chromatin diminution occurs for the first time. CDAF1 recognizes cyclobutane pyrimidine dimers in UV-damaged double-stranded DNA. Its binding properties identify CDAF1 as a novel kind of damaged-DNA binding protein. CDAF1 activity is almost not detectable in 1-celled embryos. It increases dramatically during formation of somatic founder cells and persists up to the first larval stage. However, CDAF1 is absent in tissues of adults. These findings led us to suggest that CDAF1 plays a dual role: during the early segregative cleavage period it might be involved in chromatin diminution as a transfactor and act in nucleotide excision repair as an accessory factor throughout embryogenesis.

Full Text

The Full Text of this article is available as a PDF (656.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboussekhra A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protić M., Hübscher U., Egly J. M., Wood R. D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995 Mar 24;80(6):859–868. doi: 10.1016/0092-8674(95)90289-9. [DOI] [PubMed] [Google Scholar]
  2. Baer M., Sancar G. B. Photolyases from Saccharomyces cerevisiae and Escherichia coli recognize common binding determinants in DNA containing pyrimidine dimers. Mol Cell Biol. 1989 Nov;9(11):4777–4788. doi: 10.1128/mcb.9.11.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chu G., Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science. 1988 Oct 28;242(4878):564–567. doi: 10.1126/science.3175673. [DOI] [PubMed] [Google Scholar]
  4. Etter A., Aboutanos M., Tobler H., Müller F. Eliminated chromatin of Ascaris contains a gene that encodes a putative ribosomal protein. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1593–1596. doi: 10.1073/pnas.88.5.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghosh R., Peng C. H., Mitchell D. L. Evidence for a novel DNA damage binding protein in human cells. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6918–6923. doi: 10.1073/pnas.93.14.6918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guzder S. N., Sung P., Prakash L., Prakash S. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5433–5437. doi: 10.1073/pnas.90.12.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jansen P., Moritz K. B. Ascaris DNA topoisomerase I binds preferentially to the germ-line- limited DNA. Naturwissenschaften. 1986 Dec;73(12):739–741. doi: 10.1007/BF00399247. [DOI] [PubMed] [Google Scholar]
  8. Jones C. J., Wood R. D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry. 1993 Nov 16;32(45):12096–12104. doi: 10.1021/bi00096a021. [DOI] [PubMed] [Google Scholar]
  9. Kai M., Takahashi T., Todo T., Sakaguchi K. Novel DNA binding proteins highly specific to UV-damaged DNA sequences from embryos of Drosophila melanogaster. Nucleic Acids Res. 1995 Jul 25;23(14):2600–2607. doi: 10.1093/nar/23.14.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keeney S., Chang G. J., Linn S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem. 1993 Oct 5;268(28):21293–21300. [PubMed] [Google Scholar]
  11. Mitchell D. L. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988 Jul;48(1):51–57. doi: 10.1111/j.1751-1097.1988.tb02785.x. [DOI] [PubMed] [Google Scholar]
  12. Moritz K. B., Roth G. E. Complexity of germline and somatic DNA in Ascaris. Nature. 1976 Jan 1;259(5538):55–57. doi: 10.1038/259055a0. [DOI] [PubMed] [Google Scholar]
  13. Moritz K. B., Sauer H. W. Boveri's contributions to developmental biology--a challenge for today. Int J Dev Biol. 1996 Feb;40(1):27–47. [PubMed] [Google Scholar]
  14. Müller F., Bernard V., Tobler H. Chromatin diminution in nematodes. Bioessays. 1996 Feb;18(2):133–138. doi: 10.1002/bies.950180209. [DOI] [PubMed] [Google Scholar]
  15. Müller F., Wicky C., Spicher A., Tobler H. New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell. 1991 Nov 15;67(4):815–822. doi: 10.1016/0092-8674(91)90076-b. [DOI] [PubMed] [Google Scholar]
  16. Naegeli H. Mechanisms of DNA damage recognition in mammalian nucleotide excision repair. FASEB J. 1995 Aug;9(11):1043–1050. doi: 10.1096/fasebj.9.11.7649403. [DOI] [PubMed] [Google Scholar]
  17. Nakane H., Takeuchi S., Yuba S., Saijo M., Nakatsu Y., Murai H., Nakatsuru Y., Ishikawa T., Hirota S., Kitamura Y. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature. 1995 Sep 14;377(6545):165–168. doi: 10.1038/377165a0. [DOI] [PubMed] [Google Scholar]
  18. Nichols A. F., Ong P., Linn S. Mutations specific to the xeroderma pigmentosum group E Ddb- phenotype. J Biol Chem. 1996 Oct 4;271(40):24317–24320. doi: 10.1074/jbc.271.40.24317. [DOI] [PubMed] [Google Scholar]
  19. Otrin V. R., McLenigan M., Takao M., Levine A. S., Protić M. Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light. J Cell Sci. 1997 May;110(Pt 10):1159–1168. doi: 10.1242/jcs.110.10.1159. [DOI] [PubMed] [Google Scholar]
  20. Reardon J. T., Mu D., Sancar A. Overproduction, purification, and characterization of the XPC subunit of the human DNA repair excision nuclease. J Biol Chem. 1996 Aug 9;271(32):19451–19456. doi: 10.1074/jbc.271.32.19451. [DOI] [PubMed] [Google Scholar]
  21. Roth G. E., Moritz K. B. Restriction enzyme analysis of the germ line limited DNA of Ascaris suum. Chromosoma. 1981;83(2):169–190. doi: 10.1007/BF00286787. [DOI] [PubMed] [Google Scholar]
  22. Seidl C., Moritz K. B. Protein kinase activities during early development of Ascaris suum. Naturwissenschaften. 1990 Oct;77(10):482–485. doi: 10.1007/BF01135927. [DOI] [PubMed] [Google Scholar]
  23. Spicher A., Etter A., Bernard V., Tobler H., Müller F. Extremely stable transcripts may compensate for the elimination of the gene fert-1 from all Ascaris lumbricoides somatic cells. Dev Biol. 1994 Jul;164(1):72–86. doi: 10.1006/dbio.1994.1181. [DOI] [PubMed] [Google Scholar]
  24. Streeck R. E., Moritz K. B., Beer K. Chromatin diminution in Ascaris suum: nucleotide sequence of the eliminated satellite DNA. Nucleic Acids Res. 1982 Jun 11;10(11):3495–3502. doi: 10.1093/nar/10.11.3495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sugasawa K., Masutani C., Uchida A., Maekawa T., van der Spek P. J., Bootsma D., Hoeijmakers J. H., Hanaoka F. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol. 1996 Sep;16(9):4852–4861. doi: 10.1128/mcb.16.9.4852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  27. Sung P., Watkins J. F., Prakash L., Prakash S. Negative superhelicity promotes ATP-dependent binding of yeast RAD3 protein to ultraviolet-damaged DNA. J Biol Chem. 1994 Mar 18;269(11):8303–8308. [PubMed] [Google Scholar]
  28. Takao M., Abramic M., Moos M., Jr, Otrin V. R., Wootton J. C., McLenigan M., Levine A. S., Protic M. A 127 kDa component of a UV-damaged DNA-binding complex, which is defective in some xeroderma pigmentosum group E patients, is homologous to a slime mold protein. Nucleic Acids Res. 1993 Aug 25;21(17):4111–4118. doi: 10.1093/nar/21.17.4111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Todo T., Ryo H. Identification of cellular factors that recognize UV-damaged DNA in Drosophila melanogaster. Mutat Res. 1992 Jan;273(1):85–93. doi: 10.1016/0921-8777(92)90052-5. [DOI] [PubMed] [Google Scholar]
  30. Todo T., Ryo H., Yamamoto K., Toh H., Inui T., Ayaki H., Nomura T., Ikenaga M. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science. 1996 Apr 5;272(5258):109–112. doi: 10.1126/science.272.5258.109. [DOI] [PubMed] [Google Scholar]
  31. Todo T., Takemori H., Ryo H., Ihara M., Matsunaga T., Nikaido O., Sato K., Nomura T. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993 Jan 28;361(6410):371–374. doi: 10.1038/361371a0. [DOI] [PubMed] [Google Scholar]
  32. Tornaletti S., Pfeifer G. P. UV damage and repair mechanisms in mammalian cells. Bioessays. 1996 Mar;18(3):221–228. doi: 10.1002/bies.950180309. [DOI] [PubMed] [Google Scholar]
  33. Treiber D. K., Chen Z., Essigmann J. M. An ultraviolet light-damaged DNA recognition protein absent in xeroderma pigmentosum group E cells binds selectively to pyrimidine (6-4) pyrimidone photoproducts. Nucleic Acids Res. 1992 Nov 11;20(21):5805–5810. doi: 10.1093/nar/20.21.5805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wakasugi M., Abe Y., Yoshida Y., Matsunaga T., Nikaido O. Purification of a novel UV-damaged-DNA binding protein highly specific for (6-4) photoproduct. Nucleic Acids Res. 1996 Mar 15;24(6):1099–1004. doi: 10.1093/nar/24.6.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  36. Yasui A., Eker A. P., Yasuhira S., Yajima H., Kobayashi T., Takao M., Oikawa A. A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J. 1994 Dec 15;13(24):6143–6151. doi: 10.1002/j.1460-2075.1994.tb06961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. de Vries A., van Oostrom C. T., Hofhuis F. M., Dortant P. M., Berg R. J., de Gruijl F. R., Wester P. W., van Kreijl C. F., Capel P. J., van Steeg H. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature. 1995 Sep 14;377(6545):169–173. doi: 10.1038/377169a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES