Abstract
Transcription factor IIIA (TFIIIA) and p43 zinc finger protein form distinct complexes with 5S ribosomal RNA in Xenopus oocytes. Additionally, TFIIIA binds the internal promoter of the 5S RNA gene and supports assembly of a transcription initiation complex. Both proteins have nine tandemly repeated zinc fingers with almost identical linker lengths between corresponding fingers, yet p43 has no detectable affinity for the 5S RNA gene. TFIIIA zinc fingers 1-3 are connected by highly conserved linkers, first identified in the Drosophila protein Krüppel, that are found in many DNA binding zinc finger proteins. To understand the role of these linkers in RNA and DNA binding we exchanged three TFIIIA linker amino acids with the equivalent amino acids from p43. The major effect of linker substitution is a 50-fold reduction in DNA specificity, concomitant with an 8-fold reduction in affinity. N-Terminal zinc fingers from either TFIIIA or p43 bind to multiple specific sites on 5S RNA that are resistant to competition by tRNA or poly(rA). This mode of RNA binding is unaffected by linker substitution. These data suggest that zinc finger linkers significantly facilitate the specificity of DNA binding.
Full Text
The Full Text of this article is available as a PDF (384.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreazzoli M., De Lucchini S., Costa M., Barsacchi G. RNA binding properties and evolutionary conservation of the Xenopus multifinger protein Xfin. Nucleic Acids Res. 1993 Sep 11;21(18):4218–4225. doi: 10.1093/nar/21.18.4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey J. M. Interpretation of nitrocellulose filter assays of protein--nucleic acid binding. Anal Biochem. 1979 Feb;93(1):204–206. [PubMed] [Google Scholar]
- Brown R. S., Sander C., Argos P. The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett. 1985 Jul 8;186(2):271–274. doi: 10.1016/0014-5793(85)80723-7. [DOI] [PubMed] [Google Scholar]
- Brüschweiler R., Liao X., Wright P. E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 1995 May 12;268(5212):886–889. doi: 10.1126/science.7754375. [DOI] [PubMed] [Google Scholar]
- Caricasole A., Duarte A., Larsson S. H., Hastie N. D., Little M., Holmes G., Todorov I., Ward A. RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7562–7566. doi: 10.1073/pnas.93.15.7562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choo Y., Klug A. A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. Nucleic Acids Res. 1993 Jul 25;21(15):3341–3346. doi: 10.1093/nar/21.15.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clemens K. R., Wolf V., McBryant S. J., Zhang P., Liao X., Wright P. E., Gottesfeld J. M. Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein. Science. 1993 Apr 23;260(5107):530–533. doi: 10.1126/science.8475383. [DOI] [PubMed] [Google Scholar]
- Clemens K. R., Zhang P., Liao X., McBryant S. J., Wright P. E., Gottesfeld J. M. Relative contributions of the zinc fingers of transcription factor IIIA to the energetics of DNA binding. J Mol Biol. 1994 Nov 18;244(1):23–35. doi: 10.1006/jmbi.1994.1701. [DOI] [PubMed] [Google Scholar]
- Darby M. K., Joho K. E. Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene. Mol Cell Biol. 1992 Jul;12(7):3155–3164. doi: 10.1128/mcb.12.7.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Rio S., Menezes S. R., Setzer D. R. The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA. J Mol Biol. 1993 Oct 20;233(4):567–579. doi: 10.1006/jmbi.1993.1536. [DOI] [PubMed] [Google Scholar]
- Del Río S., Setzer D. R. High yield purification of active transcription factor IIIA expressed in E. coli. Nucleic Acids Res. 1991 Nov 25;19(22):6197–6203. doi: 10.1093/nar/19.22.6197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairall L., Schwabe J. W., Chapman L., Finch J. T., Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature. 1993 Dec 2;366(6454):483–487. doi: 10.1038/366483a0. [DOI] [PubMed] [Google Scholar]
- Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friesen W. J., Darby M. K. Phage display of RNA binding zinc fingers from transcription factor IIIA. J Biol Chem. 1997 Apr 25;272(17):10994–10997. doi: 10.1074/jbc.272.17.10994. [DOI] [PubMed] [Google Scholar]
- Hansen P. K., Christensen J. H., Nyborg J., Lillelund O., Thøgersen H. C. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains. J Mol Biol. 1993 Sep 20;233(2):191–202. doi: 10.1006/jmbi.1993.1499. [DOI] [PubMed] [Google Scholar]
- Joho K. E., Darby M. K., Crawford E. T., Brown D. D. A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus. Cell. 1990 Apr 20;61(2):293–300. doi: 10.1016/0092-8674(90)90809-s. [DOI] [PubMed] [Google Scholar]
- Klocke B., Köster M., Hille S., Bouwmeester T., Böhm S., Pieler T., Knöchel W. The FAR domain defines a new Xenopus laevis zinc finger protein subfamily with specific RNA homopolymer binding activity. Biochim Biophys Acta. 1994 Jan 18;1217(1):81–89. [PubMed] [Google Scholar]
- Köster M., Kühn U., Bouwmeester T., Nietfeld W., el-Baradi T., Knöchel W., Pieler T. Structure, expression and in vitro functional characterization of a novel RNA binding zinc finger protein from Xenopus. EMBO J. 1991 Oct;10(10):3087–3093. doi: 10.1002/j.1460-2075.1991.tb07861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsson S. H., Charlieu J. P., Miyagawa K., Engelkamp D., Rassoulzadegan M., Ross A., Cuzin F., van Heyningen V., Hastie N. D. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell. 1995 May 5;81(3):391–401. doi: 10.1016/0092-8674(95)90392-5. [DOI] [PubMed] [Google Scholar]
- Liao X. B., Clemens K. R., Tennant L., Wright P. E., Gottesfeld J. M. Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene. J Mol Biol. 1992 Feb 20;223(4):857–871. doi: 10.1016/0022-2836(92)90248-i. [DOI] [PubMed] [Google Scholar]
- Liao X., Clemens K., Cavanagh J., Tennant L., Wright P. E. 1H, 15N and 13C resonance assignments for the first three zinc fingers of transcription factor IIIA. J Biomol NMR. 1994 May;4(3):433–454. doi: 10.1007/BF00179350. [DOI] [PubMed] [Google Scholar]
- Mao X., Darby M. K. A position-dependent transcription-activating domain in TFIIIA. Mol Cell Biol. 1993 Dec;13(12):7496–7506. doi: 10.1128/mcb.13.12.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McBryant S. J., Veldhoen N., Gedulin B., Leresche A., Foster M. P., Wright P. E., Romaniuk P. J., Gottesfeld J. M. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5 S ribosomal RNA. J Mol Biol. 1995 Apr 21;248(1):44–57. doi: 10.1006/jmbi.1995.0201. [DOI] [PubMed] [Google Scholar]
- Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakaseko Y., Neuhaus D., Klug A., Rhodes D. Adjacent zinc-finger motifs in multiple zinc-finger peptides from SWI5 form structurally independent, flexibly linked domains. J Mol Biol. 1992 Nov 20;228(2):619–636. doi: 10.1016/0022-2836(92)90845-b. [DOI] [PubMed] [Google Scholar]
- Pavletich N. P., Pabo C. O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993 Sep 24;261(5129):1701–1707. doi: 10.1126/science.8378770. [DOI] [PubMed] [Google Scholar]
- Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
- Pelham H. R., Brown D. D. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4170–4174. doi: 10.1073/pnas.77.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rollins M. B., Del Rio S., Galey A. L., Setzer D. R., Andrews M. T. Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos. Mol Cell Biol. 1993 Aug;13(8):4776–4783. doi: 10.1128/mcb.13.8.4776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romaniuk P. J. Characterization of the equilibrium binding of Xenopus transcription factor IIIA to the 5 S RNA gene. J Biol Chem. 1990 Oct 15;265(29):17593–17600. [PubMed] [Google Scholar]
- Sands M. S., Bogenhagen D. F. Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA but with different nuclease protection patterns. Nucleic Acids Res. 1991 Apr 25;19(8):1797–1803. doi: 10.1093/nar/19.8.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuh R., Aicher W., Gaul U., Côté S., Preiss A., Maier D., Seifert E., Nauber U., Schröder C., Kemler R. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell. 1986 Dec 26;47(6):1025–1032. doi: 10.1016/0092-8674(86)90817-2. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Setzer D. R., Menezes S. R., Del Rio S., Hung V. S., Subramanyan G. Functional interactions between the zinc fingers of Xenopus transcription factor IIIA during 5S rRNA binding. RNA. 1996 Dec;2(12):1254–1269. [PMC free article] [PubMed] [Google Scholar]
- Smith J. F., Hawkins J., Leonard R. E., Hanas J. S. Structural elements in the N-terminal half of transcription factor IIIA required for factor binding to the 5S RNA gene internal control region. Nucleic Acids Res. 1991 Dec 25;19(24):6871–6876. doi: 10.1093/nar/19.24.6871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Theunissen O., Rudt F., Guddat U., Mentzel H., Pieler T. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell. 1992 Nov 13;71(4):679–690. doi: 10.1016/0092-8674(92)90601-8. [DOI] [PubMed] [Google Scholar]
- Vandeyar M. A., Weiner M. P., Hutton C. J., Batt C. A. A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene. 1988 May 15;65(1):129–133. doi: 10.1016/0378-1119(88)90425-8. [DOI] [PubMed] [Google Scholar]
- Vrana K. E., Churchill M. E., Tullius T. D., Brown D. D. Mapping functional regions of transcription factor TFIIIA. Mol Cell Biol. 1988 Apr;8(4):1684–1696. doi: 10.1128/mcb.8.4.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zang W. Q., Romaniuk P. J. Characterization of the 5 S RNA binding activity of Xenopus zinc finger protein p43. J Mol Biol. 1995 Feb 3;245(5):549–558. doi: 10.1006/jmbi.1994.0045. [DOI] [PubMed] [Google Scholar]
- Zang W. Q., Veldhoen N., Romaniuk P. J. Effects of zinc finger mutations on the nucleic acid binding activities of Xenopus transcription factor IIIA. Biochemistry. 1995 Nov 28;34(47):15545–15552. doi: 10.1021/bi00047a021. [DOI] [PubMed] [Google Scholar]
- Zwieb C., Brown R. S. Absence of substantial bending in Xenopus laevis transcription factor IIIA-DNA complexes. Nucleic Acids Res. 1990 Feb 11;18(3):583–587. doi: 10.1093/nar/18.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]