Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1977 Aug;19(2):185–189. doi: 10.1016/S0006-3495(77)85579-3

On the photocycle and light adaptation of dark-adapted bacteriorhodopsin.

O Kalisky, C R Goldschmidt, M Ottolenghi
PMCID: PMC1473311  PMID: 880333

Abstract

Pulsed Nd laser (25 ns, 530 nm) photolysis experiments were carried out at room temperature in aqueous suspensions of dark- and light-adapted fragments of the purple membrane of Halobacterium halobium. It is shown that the (50%) 13-cis isomeric component (BR13-cis) of dark-adapted bacteriorhodopsin (BRDA) undergoes a photocycle involving a characteristic transient absorbing in the neighborhood of 610 nm. At relatively high excitation intensities BR13-cis is converted to the same 410 nm (M) transient that characterized the photocycle of the all-trans isomer (BRtrans) of light-adapted bacteriorhodopsin (BRLA). This process, which competes with the generation of the "610" species, is attributed to the photo-induced conversion, during the pulse, of BR13-cis (or of its primary photoproduct "X") to a species in the BRtrans photocyte. The relationship between these observations and the mechanism of BRDA hv leads to BRLA adaptation at low excitation intensities (for which a quantum yield limit, 0 less than or equal to (3.5 +/- 0.7) X 10(-2) , is established) is discussed.

Full text

PDF
185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chu Kung M., DeVault D., Hess B., Oesterhelt D. Photolysis of bacterial rhodopsin. Biophys J. 1975 Sep;15(9):907–911. doi: 10.1016/S0006-3495(75)85864-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Goldschmidt C. R., Ottolenghi M., Korenstein R. On the primary quantum yields in the bacteriorhodopsin photocycle. Biophys J. 1976 Jul;16(7):839–843. doi: 10.1016/S0006-3495(76)85732-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goldschmidt C. R., Ottolenghi M., Rosenfeld T. Primary processes in photochemistry of rhodopsin at room temperature. Nature. 1976 Sep 9;263(5573):169–171. doi: 10.1038/263169a0. [DOI] [PubMed] [Google Scholar]
  4. Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sherman W. V., Korenstein R., Caplan S. R. Energetics and chronology of phototransients in the light response of the purple membrane of Halobacterium halobium. Biochim Biophys Acta. 1976 Jun 8;430(3):454–458. doi: 10.1016/0005-2728(76)90021-9. [DOI] [PubMed] [Google Scholar]
  6. Sherman W. V., Slifkin M. A., Caplan S. R. Kinetic studies of phototransients in bacteriorhodopsin. Biochim Biophys Acta. 1976 Feb 16;423(2):238–248. doi: 10.1016/0005-2728(76)90182-1. [DOI] [PubMed] [Google Scholar]
  7. Stoeckenius W., Lozier R. H. Light energy conversion in Halobacterium halobium. J Supramol Struct. 1974;2(5-6):769–774. doi: 10.1002/jss.400020519. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES