Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Jan;21(1):1–17. doi: 10.1016/S0006-3495(78)85505-2

Voltage-dependent capacitance in lipid bilayers made from monolayers.

O Alvarez, R Latorre
PMCID: PMC1473368  PMID: 620076

Abstract

Electrocompression has been measured in lipid bilayers made by apposition of two monolayers. The capacitance C(V), as a function of membrane potential, V, was found to be well described by C(V) = C(O) [1 + alpha(V + delta psi)2] where C(O) is the capacitance at V = O, alpha is the fractional increase in capacitance per square volt, and delta psi is the surface potential difference. In lipid bilayers made from monolayers alpha has a value of 0.02 V-2, which is ca. 500-fold smaller than the value found in solvent containing membranes. In asymmetric bilayers made of one neutral and one negatively charged monolayer, delta psi values were found to be those expected from independent measurements of surface charge density. If the fractional increase in capacitance found here is a good approximation to that of biological membranes, nonlinear capacitative charge displacement derived from electrostriction is expected to be less than 1% of the total gating charge displacement found in squid axons.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973 Apr 13;242(5398):459–461. doi: 10.1038/242459a0. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Fröhlich O., Läuger P., Montal M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta. 1975 Jul 3;394(3):323–334. doi: 10.1016/0005-2736(75)90287-4. [DOI] [PubMed] [Google Scholar]
  4. Benz R., Janko K. Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim Biophys Acta. 1976 Dec 14;455(3):721–738. doi: 10.1016/0005-2736(76)90043-2. [DOI] [PubMed] [Google Scholar]
  5. Chandler W. K., Hodgkin A. L., Meves H. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J Physiol. 1965 Oct;180(4):821–836. doi: 10.1113/jphysiol.1965.sp007733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen L. B., Hille B., Keynes R. D., Landowne D., Rojas E. Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J Physiol. 1971 Oct;218(1):205–237. doi: 10.1113/jphysiol.1971.sp009611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans E. A., Simon S. Mechanics of electrocompression of lipid bilayer membranes. Biophys J. 1975 Aug;15(8):850–852. doi: 10.1016/S0006-3495(75)85860-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hall J. E., Latorre R. Nonactin-K+ complex as a probe for membrane asymmetry. Biophys J. 1976 Jan;16(1):99–103. doi: 10.1016/S0006-3495(76)85667-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Latorre R., Hall J. E. Dipole potential measurements in asymmetric membranes. Nature. 1976 Nov 25;264(5584):361–363. doi: 10.1038/264361a0. [DOI] [PubMed] [Google Scholar]
  12. Letter: Lenses and the compression of black lipid membranes by an electric field. Biophys J. 1975 Jan;15(1):77–81. doi: 10.1016/S0006-3495(75)85793-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosen D., Sutton A. M. The effects of a direct current potential bias on the electrical properties of bimolecular lipid membranes. Biochim Biophys Acta. 1968 Sep 17;163(2):226–233. doi: 10.1016/0005-2736(68)90101-6. [DOI] [PubMed] [Google Scholar]
  16. White S. H. Letter: Comments on "electrical breakdown of bimolecular lipid membranes as an electromechanical instability". Biophys J. 1974 Feb;14(2):155–158. doi: 10.1016/S0006-3495(74)70007-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. White S. H., Petersen D. C., Simon S., Yafuso M. Formation of planar bilayer membranes from lipid monolayers. A critique. Biophys J. 1976 May;16(5):481–489. doi: 10.1016/S0006-3495(76)85703-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. White S. H. Temperature-dependent structural changes in planar bilayer membranes: solvent "freeze-out". Biochim Biophys Acta. 1974 Jul 12;356(1):8–16. doi: 10.1016/0005-2736(74)90289-2. [DOI] [PubMed] [Google Scholar]
  19. White S. H. Thickness changes in lipid bilayer membranes. Biochim Biophys Acta. 1970;196(2):354–357. doi: 10.1016/0005-2736(70)90023-4. [DOI] [PubMed] [Google Scholar]
  20. White S. H., Thompson T. E. Capacitance, area, and thickness variations in thin lipid films. Biochim Biophys Acta. 1973 Sep 27;323(1):7–22. doi: 10.1016/0005-2736(73)90428-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES