Abstract
Thermal activation of electron transfer reactions of the blue proteins is considered in terms of vibronic coupling. Use of the electron paramagnetic resonance spectral distribution to obtain an estimate of the force constant for the relevant protein mode is proposed and demonstrated. This analysis leads to a model in which the configurations of the cupric and cuprous sites are displaced only a few degrees from each other, both being close to the configuration midway between planar and tetrahedral.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
- Blumberg W. E., Peisach J. The optical and magnetic properties of copper in Chenopodium album plastocyanin. Biochim Biophys Acta. 1966 Oct 10;126(2):269–273. doi: 10.1016/0926-6585(66)90063-x. [DOI] [PubMed] [Google Scholar]
- Brill A. S., Bryce G. F. Cupric ion in blue proteins. J Chem Phys. 1968 May 15;48(10):4398–4404. doi: 10.1063/1.1668007. [DOI] [PubMed] [Google Scholar]
- Brill A. S., Bryce G. F., Maria H. J. Optical and magnetic properties of Pseudomonas azurins. Biochim Biophys Acta. 1968 Feb 19;154(2):342–351. doi: 10.1016/0005-2795(68)90048-2. [DOI] [PubMed] [Google Scholar]
- Holwerda R. A., Wherland S., Gray H. B. Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng. 1976;5:363–396. doi: 10.1146/annurev.bb.05.060176.002051. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640–3644. doi: 10.1073/pnas.71.9.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfield J. J. Photo-induced charge transfer. A critical test of the mechanism and range of biological electron transfer processes. Biophys J. 1977 Jun;18(3):311–321. doi: 10.1016/S0006-3495(77)85616-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu V. W., Chan S. I., Brown G. S. X-ray absorption edge studies on oxidized and reduced cytochrome c oxidase. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3821–3825. doi: 10.1073/pnas.74.9.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maria H. J. Colour, magnetic resonance and symmetry of the cupric site in blue protein. Nature. 1966 Mar 5;209(5027):1023–1024. doi: 10.1038/2091023a0. [DOI] [PubMed] [Google Scholar]
- Rist G. H., Hyde J. S., Vänngård T. Electron-Nuclear Double Resonance of a Protein That Contains Copper: Evidence for Nitrogen Coordination to Cu(II) in Stellacyanin. Proc Natl Acad Sci U S A. 1970 Sep;67(1):79–86. doi: 10.1073/pnas.67.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ugurbil K., Norton R. S., Allerhand A., Bersohn R. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy. Biochemistry. 1977 Mar 8;16(5):886–894. doi: 10.1021/bi00624a012. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Williams R. J. Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci U S A. 1968 Feb;59(2):498–505. doi: 10.1073/pnas.59.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wherland S., Holwerda R. A., Rosenberg R. C., Gray H. B. Kinetic studies of the reduction of blue copper proteins by Fe(EDTA)2-. J Am Chem Soc. 1975 Sep 3;97(18):5260–5262. doi: 10.1021/ja00851a040. [DOI] [PubMed] [Google Scholar]