Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Apr;22(1):37–48. doi: 10.1016/S0006-3495(78)85469-1

Phase transitions in phosphatidylcholine dispersion observed with an interference refractometer.

A F Behof, R A Koza, L E Lach, P N Yi
PMCID: PMC1473404  PMID: 638225

Abstract

An interferometer is used to measure the refractive index change accompanying the crystal-to-liquid-crystal phase transition in the dispersion of phosphatidylcholines. Two separate methods of obtaining the refractive index change are employed: the first method analyzes the intensity transmitted through a spatial filter and the second method utilizes a piezoeletric crystal-based electronic compensator. The results of the two methods agree well. The accuracy of the apparatus (6 X 10(-6)) permitted us to use a very dilute sample to detect the phase change. Only a fraction of a milligram of dry lecithin is needed to observe the change. The result confirms conclusively that the major reason for the turbidity change at the transition temperature is the alteration in the refractive index of the lipid membranes. The fractional change in the refractive index does not agree well with the fractional change in the density of lipid molecules in vesicles.

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson M. B. Structural changes in lecithin-water systems. Thermal-turbidimetric studies. Biochim Biophys Acta. 1971 Feb 2;225(2):167–170. doi: 10.1016/0005-2736(71)90209-4. [DOI] [PubMed] [Google Scholar]
  2. Blazyk J. F., Melchoir D. L., Steim J. M. An automated differential scanning dilatometer. Anal Biochem. 1975 Oct;68(2):586–599. doi: 10.1016/0003-2697(75)90654-5. [DOI] [PubMed] [Google Scholar]
  3. Chapman D., Collin D. T. Differential thermal analysis of phospholipids. Nature. 1965 Apr 10;206(980):189–189. doi: 10.1038/206189a0. [DOI] [PubMed] [Google Scholar]
  4. Cohen L. B. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev. 1973 Apr;53(2):373–418. doi: 10.1152/physrev.1973.53.2.373. [DOI] [PubMed] [Google Scholar]
  5. HILL D. K. The volume change resulting from stimulation of a giant nerve fibre. J Physiol. 1950 Oct 16;111(3-4):304–327. doi: 10.1113/jphysiol.1950.sp004481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill B. C., Schubert E. D., Nokes M. A., Michelson R. P. Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential. Science. 1977 Apr 22;196(4288):426–428. doi: 10.1126/science.850785. [DOI] [PubMed] [Google Scholar]
  7. Ladbrooke B. D., Chapman D. Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids. 1969 Dec;3(4):304–356. doi: 10.1016/0009-3084(69)90040-1. [DOI] [PubMed] [Google Scholar]
  8. Nagle J. F. Lipid bilayer phase transition: density measurements and theory. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3443–3444. doi: 10.1073/pnas.70.12.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES