Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Apr;22(1):97–103. doi: 10.1016/S0006-3495(78)85473-3

Head Rotation or Dissociation?

A Study of Exponential Rate Processes in Chemically Skinned Rabbit Muscle Fibers When MgATP Concentration Is Changed

Masataka Kawai
PMCID: PMC1473409  PMID: 638228

Abstract

The mechanical response of fully activated muscle bundles (one to five fibers) to sinusoidal length perturbation (∼0.4% L0) was studied as a function of MgATP concentration. The frequency response (0.25-167 Hz; corresponding to 1 ms time resolution) of chemically skinned rabbit muscle fibers was resolved into three exponential rate processes, (A), (B), and (C). At 20°C, the apparent rate constants associated with the fast exponential lead (2πc = 388-588 s-1) and the oscillatory work (2πb = 59-116 s-1) both increase with increment of the MgATP concentration from 1 to 5 mM, and they both saturate for further increase. Over the whole range of MgATP concentrations the slow exponential lead (2πa = 9-7 s-1) remains constant. The effect of MgATP on processes (B) and (C) can be interpreted in the context of the biochemical evidence, in which MgATP enters the cross-bridge cycle after the desorption of the product, and the binding of MgATP to rigorlike cross-bridges promotes a rapid dissociation of actomyosin (Lymn and Taylor, 1971. Biochemistry. 10:4617-4624.). The effect is not predicted by a model for force generation in which head rotation dominates the fast component (“stage 2” of Huxley and Simmons, 1971. Nature (Lond.). 233:533-538. and 1973. Cold Spring Harbor Symp. Quant. Biol. 37:669-680.), and head dissociation dominates the slow component (“phase 4” of Huxley, 1974. J. Physiol. (Lond.). 243:1-43; Julian et al., 1974. Biophys. J. 14: 546-562.).

Full text

PDF
97

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chock S. P., Chock P. B., Eisenberg E. Pre-steady-state kinetic evidence for a cyclic interaction of myosin subfragment one with actin during the hydrolysis of adenosine 5'-triphosphate. Biochemistry. 1976 Jul 27;15(15):3244–3253. doi: 10.1021/bi00660a013. [DOI] [PubMed] [Google Scholar]
  2. Civan M. M., Podolsky R. J. Contraction kinetics of striated muscle fibres following quick changes in load. J Physiol. 1966 Jun;184(3):511–534. doi: 10.1113/jphysiol.1966.sp007929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heinl P., Kuhn H. J., Rüegg J. C. Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. J Physiol. 1974 Mar;237(2):243–258. doi: 10.1113/jphysiol.1974.sp010480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huxley A. F. Muscular contraction. J Physiol. 1974 Nov;243(1):1–43. [PMC free article] [PubMed] [Google Scholar]
  6. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  7. Julian F. J., Sollins K. R., Sollins M. R. A model for the transient and steady-state mechanical behavior of contracting muscle. Biophys J. 1974 Jul;14(7):546–562. doi: 10.1016/S0006-3495(74)85934-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawai M., Brandt P. W. Effectof MgATP on stiffness measured at two frequencies in Ca2+-activated muscle fibers. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4073–4075. doi: 10.1073/pnas.74.9.4073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kawai M., Brandt P., Orentlicher M. Dependence of energy transduction in intact skeletal muscles on the time in tension. Biophys J. 1977 May;18(2):161–172. doi: 10.1016/S0006-3495(77)85605-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawai M., Kuntz I. D. Optical diffraction studies of muscle fibers. Biophys J. 1973 Sep;13(9):857–876. doi: 10.1016/S0006-3495(73)86031-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  12. PODOLSKY R. J. Kinetics of muscular contraction: the approach to the steady state. Nature. 1960 Nov 19;188:666–668. doi: 10.1038/188666a0. [DOI] [PubMed] [Google Scholar]
  13. Steiger G. J. Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle. Pflugers Arch. 1971;330(4):347–361. doi: 10.1007/BF00588586. [DOI] [PubMed] [Google Scholar]
  14. White D. C., Thorson J. Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle. J Gen Physiol. 1972 Sep;60(3):307–336. doi: 10.1085/jgp.60.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wood D. S., Zollman J., Reuben J. P., Brandt P. W. Human skeletal muscle: properties of the "chemically skinned%" fiber. Science. 1975 Mar 21;187(4181):1075–1076. doi: 10.1126/science.187.4181.1075. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES