Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Nov;24(2):505–515. doi: 10.1016/S0006-3495(78)85397-1

Dynamic light scattering from solutions of microtubules.

J S Gethner, F Gaskin
PMCID: PMC1473413  PMID: 728526

Abstract

Calf brain microtubule protein was assembled in vitro to form dilute solutions of microtubules (240 A diameter) having lengths greater than 1 micrometer. The microtubule solutions were examined by dynamic laser light scattering techniques. The angular dependence of the correlation function leads to the conclusion that the correlation function is measuring the translational diffusion constant of the particles. The length dependence of the correlation function, however, shows that the translational diffusion constant is not being measured and that the diffusion constant for the microtubules cannot be straightforwardly determined. These results suggest that a collective property of the rods is being measured by the laser light scattering. Although specific microtubule-microtubule interactions are a possible explanation for the observed results, we present arguments that suggest that the solution can be adequately modeled as a network of entangled polymers.

Full text

PDF
505

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson F. D., Fraser A. B. Dynamics of F-actin and F-actin complexes. J Mol Biol. 1974 Oct 25;89(2):273–281. doi: 10.1016/0022-2836(74)90518-x. [DOI] [PubMed] [Google Scholar]
  2. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Engelborghs Y., De Maeyer L. C., Overbergh N. A kinetic analysis of the assembly of microtubules in vitro. FEBS Lett. 1977 Aug 1;80(1):81–85. doi: 10.1016/0014-5793(77)80411-0. [DOI] [PubMed] [Google Scholar]
  4. Feit H., Slusarek L., Shelanski M. L. Heterogeneity of tubulin subunits. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2028–2031. doi: 10.1073/pnas.68.9.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujime S., Ishiwata S. Dynamic study of F-actin by quasielastic scattering of laser light. J Mol Biol. 1971 Nov 28;62(1):251–265. doi: 10.1016/0022-2836(71)90144-6. [DOI] [PubMed] [Google Scholar]
  6. Gaskin F., Cantor C. R., Shelanski M. L. Biochemical studies on the in vitro assembly and disassembly of microtubules. Ann N Y Acad Sci. 1975 Jun 30;253:133–146. doi: 10.1111/j.1749-6632.1975.tb19197.x. [DOI] [PubMed] [Google Scholar]
  7. Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., Shelanski M. L. A dynein-like protein associated with neurotubules. FEBS Lett. 1974 Apr 1;40(2):281–286. doi: 10.1016/0014-5793(74)80244-9. [DOI] [PubMed] [Google Scholar]
  8. Gethner J. S., Flynn G. W., Berne B. J., Gaskin F. Characterization of heterogeneous solutions using laser light scattering: study of the tubulin system. Biochemistry. 1977 Dec 27;16(26):5776–5781. doi: 10.1021/bi00645a020. [DOI] [PubMed] [Google Scholar]
  9. Gethner J. S., Flynn G. W., Berne B. J., Gaskin F. Equilibrium components of tubulin preparations. Biochemistry. 1977 Dec 27;16(26):5781–5785. doi: 10.1021/bi00645a021. [DOI] [PubMed] [Google Scholar]
  10. Hocker L., Krupp J., Benedek G. B., Vournakis J. Observations of self-aggregation and dissociation of E. coli ribosomes by optical mixing spectroscopy. Biopolymers. 1973;12(7):1677–1687. doi: 10.1002/bip.1973.360120718. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lee W. I., Schmitz K. S., Lin S. C., Schurr J. M. Dynamic light-scattering studies of DNA. I. The coupling of internal modes with anisotropic translational diffusion in congested solutions. Biopolymers. 1977 Mar;16(3):583–599. doi: 10.1002/bip.1977.360160309. [DOI] [PubMed] [Google Scholar]
  13. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sloboda R. D., Dentler W. L., Rosenbaum J. L. Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry. 1976 Oct 5;15(20):4497–4505. doi: 10.1021/bi00665a026. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES