Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Nov;24(2):555–560. doi: 10.1016/S0006-3495(78)85401-0

The compensation of potential changes produced by trivalent erbium ion in squid giant axon with applied potentials.

M E Starzak, R J Starzak
PMCID: PMC1473416  PMID: 728529

Abstract

The transmembrane potential of voltage-clamped squid giant axon is increased to compensate for a reduction in the rate of potassium channel kinetics when artificial seawater with trivalent erbium ion is substituted for artificial seawater. The additional potential required to produce an equivalent rise time is a measure of the potential shift produced by the erbium ions. When the kinetics of K+ channels are matched in this manner, the maximal K+ currents are larger for the larger transmembrane potential. This observation requires a functional separation of the open K+ channel and the voltage sensor for the gating mechanism of this channel.

Full text

PDF
555

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Palti Y., Senft J. P. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance. J Membr Biol. 1973 Nov 8;13(4):387–410. doi: 10.1007/BF01868237. [DOI] [PubMed] [Google Scholar]
  2. Begenisich T. Magnitude and location of surface charges on Myxicola giant axons. J Gen Physiol. 1975 Jul;66(1):47–65. doi: 10.1085/jgp.66.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilbert D. L., Ehrenstein G. Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J. 1969 Mar;9(3):447–463. doi: 10.1016/S0006-3495(69)86396-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mauro A. Space Charge Regions in Fixed Charge Membranes and the Associated Property of Capacitance. Biophys J. 1962 Mar;2(2 Pt 1):179–198. doi: 10.1016/s0006-3495(62)86848-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Starzak M. E., Starzak R. J. An action potential clamp to probe the effectiveness of space clamp in axons. IEEE Trans Biomed Eng. 1978 Mar;25(2):201–204. doi: 10.1109/TBME.1978.326249. [DOI] [PubMed] [Google Scholar]
  9. Starzak M. E., Tranchina D. A. An open system kinetic transport model for the Hodgkin-Huxley equations. J Theor Biol. 1976 Feb;56(2):283–299. doi: 10.1016/s0022-5193(76)80076-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES