Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Nov;24(2):429–437. doi: 10.1016/S0006-3495(78)85393-4

Relative rates of repair of single-strand breaks and postirradiation DNA degradation in normal and induced cells of Escherichia coli.

E C Pollard, J K Fugate Jr
PMCID: PMC1473418  PMID: 365253

Abstract

Labeled DNA from irradiated Excherichia coli cells has been studied on an alkaline sucrose gradient without acid precipitation of the DNA. This enables the observation of both DNA repair and DNA degradation. The use of a predose of ultraviolet light (UV) causes induction of an inhibitor of postirradiation DNA degradation in lex+ strains. The effect of this induction on both the repair of single-strand breaks and DNA degradation has been followed in strains WU3610 (uvr+) and WU3610-89 (uvr-). The repair process is more rapid than the degradation, and when degradation is inhibited more repair is apparent. Cells that are lex- (Bs-1 and AB2474) cannot be induced for inhibition of degradation. Nevertheless, by observation at short times repair can be seen clearly. This repaired DNA is degraded, suggesting that the signal for DNA degradation is not a single-strand break.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Grady L. J., Pollard E. C. Ionizing radiation-initiated degradation of deoxyribonucleic acid in bacteria. A possible role for defective prophage. Radiat Res. 1968 Oct;36(1):68–86. [PubMed] [Google Scholar]
  2. Horan P. K., Hird K., Pollard E. C. A strain of Escherichia coli with minimum postirradiation degradation properties. Radiat Res. 1972 Nov;52(2):291–300. [PubMed] [Google Scholar]
  3. Hutchinson F., Krasin F. Dependence of the sedimentation of high molecular weight DNA on centrifuge speed. Biophys Chem. 1976 Dec;6(1):23–29. doi: 10.1016/0301-4622(76)80058-0. [DOI] [PubMed] [Google Scholar]
  4. JAGGER J. A small and inexpensive ultraviolet dose-rate meter useful in biological experiements. Radiat Res. 1961 Apr;14:394–403. [PubMed] [Google Scholar]
  5. MILETIC B., KUCAN Z., DRAKULIC M., ZAJEC L. Effect of chloramphenicol on the biosynthesis of DNA in x-irradiated Escherichia coli B. Biochem Biophys Res Commun. 1961 Apr 7;4:348–352. doi: 10.1016/0006-291x(61)90216-9. [DOI] [PubMed] [Google Scholar]
  6. MILETIC B., KUCAN Z., NOVAK D. EFFECT OF REPEATED X-IRRADIATION ON THE PROCESS OF DEGRADATION OF DEOXYRIBONUCLEIC ACID. Nature. 1964 Apr 4;202:106–107. doi: 10.1038/202106a0. [DOI] [PubMed] [Google Scholar]
  7. Marsden H. S., Pollard E. C., Ginoza W., Randall E. P. Involvement of recA and exr genes in the in vivo inhibition of the recBC nuclease. J Bacteriol. 1974 May;118(2):465–470. doi: 10.1128/jb.118.2.465-470.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  9. Pollard E. C., Randall E. P. Studies on the inducible inhibitor of radiation-induced DNA degradation of Escherichia coli. Radiat Res. 1973 Aug;55(2):265–279. [PubMed] [Google Scholar]
  10. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  11. Tolun A., Christensen R., Pollard E. C. Repair of radiation-induced strand breaks as related to the inducible inhibitor of postirradiation DNA degradation. Biophys J. 1974 Sep;14(9):691–696. doi: 10.1016/S0006-3495(74)85944-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weigle J. J. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636. doi: 10.1073/pnas.39.7.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Witkin E. M., George D. L. Ultraviolet mutagenesis in polA and UvrA polA derivatives of Escherichia coli B-R: evidence for an inducible error-prone repair system. Genetics. 1973 Apr;73(Suppl):91–10. [PubMed] [Google Scholar]
  14. Witkin E. M. The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. Proc Natl Acad Sci U S A. 1967 May;57(5):1275–1279. doi: 10.1073/pnas.57.5.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zimm B. H. Anomalies in sedimentation. IV. Decrease in sedimentation coefficients of chains at high fields. Biophys Chem. 1974 Apr;1(4):279–291. doi: 10.1016/0301-4622(74)80014-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES