Abstract
Electrophoretic light scattering was used to determine the electrophoretic mobility distributions of isolated bovine adrenal chromaffin granules as a function of divalent metal ion concentrations. Changes in the electrophoretic mobility reflected changes in the surface charge density of the granules. Ca2+ and Mg2+ (0.10--2.0 mM) were equally effective in reducing the electrophoretic mobilities. These findings are consistent with recent studies of the binding of Ca2+ and Mg2+ to the surface of chromaffin granules and are further evidence that the specific role of Ca2+ in exocytosis is due to effects other than the ability of Ca2+ to decrease the electrostatic repulsion between negatively charged membranes.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dean P. M. Exocytosis modelling: an electrostatic function for calcium in stimulus-secretion coupling. J Theor Biol. 1975 Oct;54(2):289–308. doi: 10.1016/s0022-5193(75)80132-9. [DOI] [PubMed] [Google Scholar]
- Dean P. M., Matthews E. K. Calcium-ion binding to the chromaffin-granule surface. Biochem J. 1974 Sep;142(3):637–640. doi: 10.1042/bj1420637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W. Involvement of calcium in exocytosis and the exocytosis--vesiculation sequence. Biochem Soc Symp. 1974;(39):1–28. [PubMed] [Google Scholar]
- Douglas W. W., Rubin R. P. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963 Jul;167(2):288–310. doi: 10.1113/jphysiol.1963.sp007150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eagles P. A., Johnson L. N., Van Horn C. The distribution of anionic sites on the surface of the chromaffin granule membrane. J Ultrastruct Res. 1976 Apr;55(1):87–95. doi: 10.1016/s0022-5320(76)80084-6. [DOI] [PubMed] [Google Scholar]
- Edwards W., Phillips J. H., Morris S. J. Structural changes in chromaffin granules induced by divalent cations. Biochim Biophys Acta. 1974 Jul 31;356(2):164–173. doi: 10.1016/0005-2736(74)90280-6. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matthews E. K., Evans R. J., Dean P. M. The ionogenic nature of the secretory-granule membrane. Electrokinetic properties of isolated chromaffin granules. Biochem J. 1972 Dec;130(3):825–832. doi: 10.1042/bj1300825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris S. J., Schober R. Demonstration of binding sites for divalent and trivalent ions on the outer surface of chromaffin-granule membranes. Eur J Biochem. 1977 May 2;75(1):1–12. doi: 10.1111/j.1432-1033.1977.tb11498.x. [DOI] [PubMed] [Google Scholar]
- Schober R., Nitsch C., Rinne U., Morris S. J. Calcium-induced displacement of membrane-associated particles upon aggregation of chromaffin granules. Science. 1977 Feb 4;195(4277):495–497. doi: 10.1126/science.835010. [DOI] [PubMed] [Google Scholar]
- Trifaró J. M., Dworkind J. A new and simple method for isolation of adrenal chromaffin granules by means of an isotonic density gradient. Anal Biochem. 1970 Apr;34(2):403–412. doi: 10.1016/0003-2697(70)90125-9. [DOI] [PubMed] [Google Scholar]
