Abstract
The self-diffusion coefficient of the extracellular hemoglobin of Lumbricus terrestris (mol wt 3.7 × 106 daltons) has been measured at protein concentrations ranging from 2 to 25 g/100 ml. The self-diffusion coefficient of human hemoglobin has been measured at concentrations between 10 and 43 g/100 ml. For these measurements, 14C-labeled hemoglobin was made to diffuse from one Millipore filter into three consecutively arranged Millipore filters containing unlabeled hemoglobin. After a suitable time the filters were separated, and the protein diffusion coefficient was determined from the distribution of radioactivity in the four filters with a table given by Kawalki (1894, Ann. Phys. Chem. 52:166-190.). The following results were obtained. The diffusion coefficient of Lumbricus hemoglobin is 1.2 × 10-7 cm2s-1 at a protein concentration of 2.1 g/100 ml, and is reduced to about 1/10 of this value when the concentration is 25 g/100 ml (T = 21°C). Between 0 and 16 g/100 ml the logarithm of the diffusion coefficient of Lumbricus hemoglobin falls linearly with concentration. Above 16 g/100 ml a marked increase in the concentration dependence of the diffusion coefficient is observed. Extrapolation of the data to zero hemoglobin concentration yields a limiting value of the diffusion coefficient of Lumbricus hemoglobin of 1.3 × 10-7 cm2s-1. The diffusion coefficient of human hemoglobin is 4.5 × 10-7 cm2s-1 at a hemoglobin concentration of 9.7 g/100 ml, and falls to 0.14 × 10-7 cm2s-1 at a hemoglobin concentration of 43.0 g/100 ml. In addition to diffusivities, the viscosities of human and Lumbricus hemoglobin solutions were measured in a wide range of protein concentrations.
The concentration dependence of the diffusivity of Lumbricus hemoglobin is compared to that of myoglobin, ovalbumin, and tetrameric hemoglobin. Proportionality between the diffusion coefficient and the reciprocal of the viscosity of the protein solution is found for all these proteins. It is also shown that an equation proposed by Anderson (1973) gives an excellent description of the diffusivity of the various proteins up to moderate protein concentrations. Above concentrations of 16 g/100 ml for Lumbricus hemoglobin, and 30 g/100 ml for tetrameric hemoglobin, however, protein diffusivity falls much more rapidly with increasing concentration than is predicted by this equation.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert S. S., Banks G. The concentration dependence of the hemoglobin mutual diffusion coefficient. Biophys Chem. 1976 May;4(3):287–296. doi: 10.1016/0301-4622(76)80077-4. [DOI] [PubMed] [Google Scholar]
- Chick H., Lubrzynska E. The Viscosity of Some Protein Solutions. Biochem J. 1914 Feb;8(1):59–69. doi: 10.1042/bj0080059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David M. M., Daniel E. Subunit structure of earthworm erythrocruorin. J Mol Biol. 1974 Jul 25;87(1):89–101. doi: 10.1016/0022-2836(74)90561-0. [DOI] [PubMed] [Google Scholar]
- Gros G., Moll W. Facilitated diffusion of CO2 across albumin solutions. J Gen Physiol. 1974 Sep;64(3):356–371. doi: 10.1085/jgp.64.3.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gros G., Moll W. The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions. Pflugers Arch. 1971;324(3):249–266. doi: 10.1007/BF00586422. [DOI] [PubMed] [Google Scholar]
- Keller K. H., Friedlander S. K. Diffusivity measurements of human methemoglobin. J Gen Physiol. 1966 Mar;49(4):681–687. doi: 10.1085/jgp.49.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreuzer F., Hoofd L. J. Factors influencing facilitated diffusion of oxygen in the presence of hemoglobin and myoglobin. Respir Physiol. 1972 May;15(1):104–124. doi: 10.1016/0034-5687(72)90008-4. [DOI] [PubMed] [Google Scholar]
- LEVIN O. Electron microscope observations on some 60 s erythrocruorins and their split products. J Mol Biol. 1963 Jan;6:95–101. doi: 10.1016/s0022-2836(63)80084-4. [DOI] [PubMed] [Google Scholar]
- Moll W. The diffusion coefficient of haemoglobin. Respir Physiol. 1966;1(4):357–365. doi: 10.1016/0034-5687(66)90002-8. [DOI] [PubMed] [Google Scholar]
- Moll W. The diffusion coefficient of myoglobin in muscle homogenate. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;299(3):247–251. doi: 10.1007/BF00362587. [DOI] [PubMed] [Google Scholar]
- ROCHE J., BESSIS M., THIERY J. P. [Study of the plasmatic hemoglobin of some Annelidae with the electron microscope]. Biochim Biophys Acta. 1960 Jun 17;41:182–184. doi: 10.1016/0006-3002(60)90397-8. [DOI] [PubMed] [Google Scholar]
- Riveros-Moreno V., Wittenberg J. B. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem. 1972 Feb 10;247(3):895–901. [PubMed] [Google Scholar]
- Ross P. D., Minton A. P. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun. 1977 Jun 20;76(4):971–976. doi: 10.1016/0006-291x(77)90950-0. [DOI] [PubMed] [Google Scholar]
- SCHOLANDER P. F. Oxygen transport through hemoglobin solutions. Science. 1960 Feb 26;131(3400):585–590. doi: 10.1126/science.131.3400.585. [DOI] [PubMed] [Google Scholar]
- STARK G. R., SMYTH D. G. The use of cyanate for the determination of NH2-terminal residues in proteins. J Biol Chem. 1963 Jan;238:214–226. [PubMed] [Google Scholar]
- Shlom J. M., Vinogradov S. N. A study of the subunit structure of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem. 1973 Nov 25;248(22):7904–7912. [PubMed] [Google Scholar]
- Stark G. R. Reactions of cyanate with functional groups of proteins. 3. Reactions with amino and carboxyl groups. Biochemistry. 1965 Jun;4(6):1030–1036. doi: 10.1021/bi00882a008. [DOI] [PubMed] [Google Scholar]
- Vinogradov S. N., Shlom J. M., Hall B. C., Kapp O. H., Mizukami H. The dissociation of Lumbricus terrestris hemoglobin: a model of its subunit structure. Biochim Biophys Acta. 1977 May 27;492(1):136–155. doi: 10.1016/0005-2795(77)90221-5. [DOI] [PubMed] [Google Scholar]
- Williams R. C., Jr, Chung L. L., Schuster T. M. Preparation and purification of carbamylated intermediates of human hemoglobin. Biochem Biophys Res Commun. 1975 Jan 6;62(1):118–128. doi: 10.1016/s0006-291x(75)80413-x. [DOI] [PubMed] [Google Scholar]
- Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]
- Wittenberg J. B. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem. 1966 Jan 10;241(1):104–114. [PubMed] [Google Scholar]
- Wood E. J., Mosby L. J., Robinson M. S. Characterization of the extracellular haemoglobin of Haemopsis sanguisuga (L.). Biochem J. 1976 Mar 1;153(3):589–596. doi: 10.1042/bj1530589. [DOI] [PMC free article] [PubMed] [Google Scholar]