Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Dec;24(3):749–764. doi: 10.1016/S0006-3495(78)85418-6

Evidence for a discrete charge effect within lipid bilayer membranes.

C C Wang, L J Bruner
PMCID: PMC1473501  PMID: 737286

Abstract

A high amplitude voltage step technique has been used to meausre the surface density of dipicrylamine anions adsorbed at the surfaces of lipid bilayer membranes. Accompanying low amplitude measurements have determined the relaxation time for transient current flow across the membranes, a parameter governed by the height of the central energy barrier which dipicrylamine anions must cross in moving from one membrane surface to the other. Measured relaxation times and surface charge densities have been related by a quasi-continuum model of the discrete charge effect, which predicts that the membrane central barrier height will increase with increasing density of adsorbed surface charge. The experimentally determined relationship is in satisfactory agreement with the predictions of the model. The model does not provide a complete description of the membrane/solution interface, however, because it cannot be applied to the description of previously measured isotherms for the adsorption of dipicrylamine anions onto bilayer membranes surfaces. Possible reasons for this discrepancy are discussed.

Full text

PDF
749

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen O. S., Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benz R., Läuger P., Janko K. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Biochim Biophys Acta. 1976 Dec 14;455(3):701–720. doi: 10.1016/0005-2736(76)90042-0. [DOI] [PubMed] [Google Scholar]
  5. Brown R. H., Jr Membrane surface charge: discrete and uniform modelling. Prog Biophys Mol Biol. 1974;28:341–370. doi: 10.1016/0079-6107(74)90021-2. [DOI] [PubMed] [Google Scholar]
  6. Bruner L. J. The interaction of hydrophobic ions with lipid bilayer membranes. J Membr Biol. 1975;22(2):125–141. doi: 10.1007/BF01868167. [DOI] [PubMed] [Google Scholar]
  7. Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Neumcke B., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. Biophys J. 1969 Sep;9(9):1160–1170. doi: 10.1016/S0006-3495(69)86443-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wang C. C., Bruner L. J. Lipid-dependent and phloretin-induced modifications of dipicrylamine adsorption by bilayer membranes. Nature. 1978 Mar 16;272(5650):268–270. doi: 10.1038/272268a0. [DOI] [PubMed] [Google Scholar]
  10. Wulf J., Benz R., Pohl W. G. Properties of bilayer membranes in the presence of dipicrylamine. A comparative study by optical absorption and electrical relaxation measurements. Biochim Biophys Acta. 1977 Mar 17;465(3):429–442. doi: 10.1016/0005-2736(77)90262-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES