Abstract
A mathematical model is derived from physiological considerations for slow potential waves (called spreading depression) in cortical neuronal structures. The variables taken into account are the intra- and extracellular concentrations of Na+, Cl-, K+, and Ca++, together with excitatory and inhibitor transmitter substances. The general model includes conductance changes for these various ions, which may occur at nonsynaptic and synaptic membrane together with active transport mechanisms (pumps). A detailed consideration of only the conductance changes due to transmitter release leads to a system of nonlinear diffusion equations coupled with a system or ordinary differential equations. We obtain numerical solutions of a set of simplified model equations involving only K+ and Ca++ concentrations. The solutions agree qualitatively with experimentally obtained time-courses of these two ionic concentrations during spreading depression. The numerical solutions exhibit the observed phenomena of solitary waves and annihilation of colliding waves.
Full text
PDF



















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carmo R. J., Leao A. A. On the relation of glutamic acid and some allied compounds to corticl spreading depression. Brain Res. 1972 Apr 28;39(2):515–518. doi: 10.1016/0006-8993(72)90455-6. [DOI] [PubMed] [Google Scholar]
- Collewijn H., Harreveld A. V. Membrane potential of cerebral cortical cells during reading depression and asyxia. Exp Neurol. 1966 Aug;15(4):425–436. doi: 10.1016/0014-4886(66)90140-3. [DOI] [PubMed] [Google Scholar]
- Cooke J. D., Quastel D. M. The specific effect of potassium on transmitter release by motor nerve terminals and its inhibition by calcium. J Physiol. 1973 Jan;228(2):435–458. doi: 10.1113/jphysiol.1973.sp010094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fifkova E., Van Harreveld A. Glutamate and spreading depression. J Neurobiol. 1974;5(5):469–473. doi: 10.1002/neu.480050508. [DOI] [PubMed] [Google Scholar]
- Fisher R. S., Pedley T. A., Prince D. A. Kinetics of potassium movement in norman cortex. Brain Res. 1976 Jan 16;101(2):223–237. doi: 10.1016/0006-8993(76)90265-1. [DOI] [PubMed] [Google Scholar]
- Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOURAS P. Spreading depression of activity in amphibian retina. Am J Physiol. 1958 Oct;195(1):28–32. doi: 10.1152/ajplegacy.1958.195.1.28. [DOI] [PubMed] [Google Scholar]
- GRAFSTEIN B. Mechanism of spreading cortical depression. J Neurophysiol. 1956 Mar;19(2):154–171. doi: 10.1152/jn.1956.19.2.154. [DOI] [PubMed] [Google Scholar]
- Gage P. W., Quastel D. M. Dual effect of potassium on transmitter release. Nature. 1965 May 8;206(984):625–626. doi: 10.1038/206625a0. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinemann U., Lux H. D. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 1977 Jan 21;120(2):231–249. doi: 10.1016/0006-8993(77)90903-9. [DOI] [PubMed] [Google Scholar]
- Higashida H., Mitarai G., Watanabe S. A comparative study of membrane potential changes in neurons and neuroglial cells during spreading depression in the rabbit. Brain Res. 1974 Jan 18;65(3):411–425. doi: 10.1016/0006-8993(74)90232-7. [DOI] [PubMed] [Google Scholar]
- Kuffler S. W. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc Lond B Biol Sci. 1967 Jun 6;168(1010):1–21. doi: 10.1098/rspb.1967.0047. [DOI] [PubMed] [Google Scholar]
- Latzkovits L., Sensenbrenner M., Mandel P. Tracer kinetic model analysis of potassium uptake by dissociated nerve cell cultures: glial-neuronal interrelationship. J Neurochem. 1974 Jul;23(1):193–200. doi: 10.1111/j.1471-4159.1974.tb06934.x. [DOI] [PubMed] [Google Scholar]
- Latzkovits L., Sensenbrenner M., Mandel P. Tracer kinetic model analysis of potassium uptake by dissociated nerve cell cultures: glial-neuronal interrelationship. J Neurochem. 1974 Jul;23(1):193–200. doi: 10.1111/j.1471-4159.1974.tb06934.x. [DOI] [PubMed] [Google Scholar]
- Llinás R., Steinberg I. Z., Walton K. Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2918–2922. doi: 10.1073/pnas.73.8.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lux H. D., Neher E. The equilibration time course of (K + ) 0 in cat cortex. Exp Brain Res. 1973 Apr 30;17(2):190–205. doi: 10.1007/BF00235028. [DOI] [PubMed] [Google Scholar]
- MCLENNAN H. The diffusion of potassium, sodium, sucrose and inulin in the extracellular spaces of mammalian tissues. Biochim Biophys Acta. 1957 Apr;24(1):1–8. doi: 10.1016/0006-3002(57)90138-5. [DOI] [PubMed] [Google Scholar]
- Mayevsky A., Chance B. Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res. 1974 Jan 18;65(3):529–533. doi: 10.1016/0006-8993(74)90243-1. [DOI] [PubMed] [Google Scholar]
- Mori S., Miller W. H., Tomita T. Müller cell function during spreading depression in frog retina. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1351–1354. doi: 10.1073/pnas.73.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NICHOLLS J. G., KUFFLER S. W. EXTRACELLULAR SPACE AS A PATHWAY FOR EXCHANGE BETWEEN BLOOD AND NEURONS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH: IONIC COMPOSITION OF GLIAL CELLS AND NEURONS. J Neurophysiol. 1964 Jul;27:645–671. doi: 10.1152/jn.1964.27.4.645. [DOI] [PubMed] [Google Scholar]
- Neumann E., Chang H. W. Dynamic properties of isolated acetylcholine receptor protein: kinetics of the binding of acetylcholine and Ca ions. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3994–3998. doi: 10.1073/pnas.73.11.3994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson C., Bruggencate G. T., Steinberg R., Stöckle H. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1287–1290. doi: 10.1073/pnas.74.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ransom B. R., Goldring S. Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J Neurophysiol. 1973 Sep;36(5):855–868. doi: 10.1152/jn.1973.36.5.855. [DOI] [PubMed] [Google Scholar]
- Reshodko L. V., Bures J. Computer simulation of reverberating spreading depression in a network of cell automata. Biol Cybern. 1975;18(3-4):181–189. doi: 10.1007/BF00326688. [DOI] [PubMed] [Google Scholar]
- Rinvik E., Grofová I. Observations on the fine structure of the substantia nigra in the cat. Exp Brain Res. 1970;11(3):229–248. doi: 10.1007/BF01474384. [DOI] [PubMed] [Google Scholar]
- Roberts P. J., Keen P. (14C)glutamate uptake and compartmentation in glia of rat dorsal sensory ganglion. J Neurochem. 1974 Jul;23(1):201–209. doi: 10.1111/j.1471-4159.1974.tb06935.x. [DOI] [PubMed] [Google Scholar]
- Rosenthal M., Somjen G. Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol. 1973 Jul;36(4):739–749. doi: 10.1152/jn.1973.36.4.739. [DOI] [PubMed] [Google Scholar]
- Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibata M., Bures J. Optimum topographical conditions for reverberating cortical spreading depression in rats. J Neurobiol. 1974;5(2):107–118. doi: 10.1002/neu.480050203. [DOI] [PubMed] [Google Scholar]
- Shibata M., Bures J. Reverberation of cortical spreading depression along closed-loop pathways in rat cerebral cortex. J Neurophysiol. 1972 May;35(3):381–388. doi: 10.1152/jn.1972.35.3.381. [DOI] [PubMed] [Google Scholar]
- Shibata M., Bures J. Techniques for termination of reverberating spreading depression in rats. J Neurophysiol. 1975 Jan;38(1):158–166. doi: 10.1152/jn.1975.38.1.158. [DOI] [PubMed] [Google Scholar]
- Sjodin R. A., Ortiz O. Resolution of the potassium ion pump in muscle fibers using barium ions. J Gen Physiol. 1975 Sep;66(3):269–286. doi: 10.1085/jgp.66.3.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugaya E., Takato M., Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol. 1975 Jul;38(4):822–841. doi: 10.1152/jn.1975.38.4.822. [DOI] [PubMed] [Google Scholar]
- Ueda M., Bures J., Fischer J. Spreading depression elicited by thermal effects of ultrasonic irradiation of cerebral cortex in rats. J Neurobiol. 1977 Jul;8(4):381–393. doi: 10.1002/neu.480080409. [DOI] [PubMed] [Google Scholar]
- VAN HARREVELD A. Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J Neurochem. 1959 Feb;3(4):300–315. doi: 10.1111/j.1471-4159.1959.tb12636.x. [DOI] [PubMed] [Google Scholar]
- Zieglgänsberger W., Puil E. A. Tetrodotoxin interference of CNS excitation by glutamic acid. Nat New Biol. 1972 Oct 18;239(94):204–205. doi: 10.1038/newbio239204a0. [DOI] [PubMed] [Google Scholar]
