Abstract
The effects of temperature (3 degrees-26 degrees C) on the nonlinear components of the displacement current were measured in internally perfused, voltage clamped squid axons. Steps of potential were applied from a holding potential of -70mV (outside ground) to values from -130 to +70mV and either the current or its integral (charge) was recorded as a function of time. For that component of the charge movement not linearly related to voltage, the total charge moved in a few milliseconds (about 1,500 electronic charges/micron2) between saturation limits (e.g. -100mV to +50mV) showed an apparent increase of 13 +/- 5% for a 10 degrees C rise in temperature. Attempts to fit the falling phase of the gating current (or charge) with the sum of two exponentials showed temperature effects on both components but there was considerable scattering. At short times, records for current or charge made at 16 degrees C, expanded by a factor alpha, superimposed on those made at 6 degrees C for alpha about 1.6. For long times alpha was about 2.3.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keynes R. D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 1974 Jun;239(2):393–434. doi: 10.1113/jphysiol.1974.sp010575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meves H. The effect of holding potential on the asymmetry currents in squid gaint axons. J Physiol. 1974 Dec;243(3):847–867. doi: 10.1113/jphysiol.1974.sp010780. [DOI] [PMC free article] [PubMed] [Google Scholar]
