Abstract
The mechanism of the inactivation of the enzyme urease produced by subjecting its dilute solutions to hydrodynamic shear stresses in the range 0.5-2.5 Pa has been determined. By studying the kinetics of urease-catalyzed urea hydrolysis during application of hydrodynamic shear under varying chemical environments, we demonstrate that micromolar quantities of metal ions, in this case adventitious Fe, can accelerate the oxidation of thiol groups on urease and thus inactivate it when the protein is subjected to a shearing stress of order 1.0 Pa. In the absence of metal ion this stress level is ineffectual. It is proposed that this type of synergy between deformation and chemical environment may be crucial in many situations where biological macromolecules are subjected to mechanical stress.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi K., Asakura T. Effect of 2,3-diphosphoglycerate and inositol hexaphosphate on the stability of normal sickle hemoglobins. Biochemistry. 1974 Nov 19;13(24):4976–4982. doi: 10.1021/bi00721a016. [DOI] [PubMed] [Google Scholar]
- Asakura T., Adachi K., Sono M., Friedman S., Schwartz E. Mechanical stability of hemoglobin subunits: an abnormality in betaS-subunits of sickle hemoglobin. Biochem Biophys Res Commun. 1974 Apr 8;57(3):780–786. doi: 10.1016/0006-291x(74)90614-7. [DOI] [PubMed] [Google Scholar]
- Asakura T., Agarwal P. L., Relman D. A., McCray J. A., Chance B., Schwartz E., Friedman S., Lubin B. Mechanical instability of the oxy-form of sickle haemoglobin. Nature. 1973 Aug 17;244(5416):437–438. doi: 10.1038/244437a0. [DOI] [PubMed] [Google Scholar]
- Asakura T., Onishi T., Friedman S., Schwartz E. Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proc Natl Acad Sci U S A. 1974 May;71(5):1594–1598. doi: 10.1073/pnas.71.5.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charm S. E., Wong B. L. Enzyme inactivation with shearing. Biotechnol Bioeng. 1970 Nov;12(6):1103–1109. doi: 10.1002/bit.260120615. [DOI] [PubMed] [Google Scholar]
- Charm S. E., Wong B. L. Shear degradation of fibrinogen in the circulation. Science. 1970 Oct 23;170(3956):466–468. doi: 10.1126/science.170.3956.466. [DOI] [PubMed] [Google Scholar]
- Dixon N. E., Gazzola T. C., blakeley R. L., Zermer B. Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc. 1975 Jul 9;97(14):4131–4133. doi: 10.1021/ja00847a045. [DOI] [PubMed] [Google Scholar]
- Fishbein W. N., Nagarajan K., Scurzi W. Urease catalysis and structure. IX. The half-unit and hemipolymers of jack bean urease. J Biol Chem. 1973 Nov 25;248(22):7870–7877. [PubMed] [Google Scholar]
- LEVINE J. M., LEON R., STEIGMANN F. A rapid method for the determination of urea in blood and urine. Clin Chem. 1961 Oct;7:488–493. [PubMed] [Google Scholar]
- OHNISHI T., OHNISHI T. Adenosine triphosphatase activity of glycerinated muscle fibres in a mechanical field. Nature. 1963 Jan 12;197:184–185. doi: 10.1038/197184a0. [DOI] [PubMed] [Google Scholar]
- Vorob'ev V. I., Kukhareva L. V. Izmenenie adenozintrifosfataznoi aktivnosti MIOZINA PRI DEFORMATSII V GIDRODINAMICHESKOM POLE. Dokl Akad Nauk SSSR. 1965 Nov 11;165(2):435–438. [PubMed] [Google Scholar]
