Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 15;26(4):994–1001. doi: 10.1093/nar/26.4.994

Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both heterochromatic and euchromatic regions of the human genome.

C A Johnson 1, L P O'Neill 1, A Mitchell 1, B M Turner 1
PMCID: PMC147356  PMID: 9461459

Abstract

The pattern of histone H4 acetylation in different genomic regions has been investigated by immunoprecipitating oligonucleosomes from a human lymphoblastoid cell line with antibodies to H4 acetylated at lysines 5, 8, 12 or 16. DNA from antibody-bound or unbound chromatin was assayed by slot blotting. Pol I and pol II transcribed genes located in euchromatin were shown to have levels of H4 acetylation at lysines 5, 8 and 12 equivalent to those in input chromatin, but to be slightly enriched in H4 acetylated at lysine 16. In no case did the acetylation level correlate with actual or potential transcriptional activity. All acetylated histone H4 isoforms were depleted in non-coding, simple repeat DNA in heterochromatin, though the extent of depletion varied with the type of heterochromatin and with the isoform. Two single copy genes that map within or adjacent to blocks of paracentric heterochromatin are depleted in H4 acetylated at lysines 5, 8 and 12, but not 16. Consensus sequences of repetitive elements of the Alu family (SINES, enriched in R bands) were associated with H4 that was more highly acetylated at all four lysines than input chromatin, while H4 associated with Kpn I elements (LINES, enriched in G bands) was significantly underacetylated.

Full Text

The Full Text of this article is available as a PDF (251.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegra P., Sterner R., Clayton D. F., Allfrey V. G. Affinity chromatographic purification of nucleosomes containing transcriptionally active DNA sequences. J Mol Biol. 1987 Jul 20;196(2):379–388. doi: 10.1016/0022-2836(87)90698-x. [DOI] [PubMed] [Google Scholar]
  2. Belyaev N., Keohane A. M., Turner B. M. Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum Genet. 1996 May;97(5):573–578. doi: 10.1007/BF02281863. [DOI] [PubMed] [Google Scholar]
  3. Bone J. R., Lavender J., Richman R., Palmer M. J., Turner B. M., Kuroda M. I. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 1994 Jan;8(1):96–104. doi: 10.1101/gad.8.1.96. [DOI] [PubMed] [Google Scholar]
  4. Bradbury E. M. Reversible histone modifications and the chromosome cell cycle. Bioessays. 1992 Jan;14(1):9–16. doi: 10.1002/bies.950140103. [DOI] [PubMed] [Google Scholar]
  5. Braunstein M., Rose A. B., Holmes S. G., Allis C. D., Broach J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 1993 Apr;7(4):592–604. doi: 10.1101/gad.7.4.592. [DOI] [PubMed] [Google Scholar]
  6. Braunstein M., Sobel R. E., Allis C. D., Turner B. M., Broach J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol. 1996 Aug;16(8):4349–4356. doi: 10.1128/mcb.16.8.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brosch G., Goralik-Schramel M., Loidl P. Purification of histone deacetylase HD1-A of germinating maize embryos. FEBS Lett. 1996 Sep 16;393(2-3):287–291. doi: 10.1016/0014-5793(96)00909-x. [DOI] [PubMed] [Google Scholar]
  8. Brownell J. E., Zhou J., Ranalli T., Kobayashi R., Edmondson D. G., Roth S. Y., Allis C. D. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996 Mar 22;84(6):843–851. doi: 10.1016/s0092-8674(00)81063-6. [DOI] [PubMed] [Google Scholar]
  9. Chang L., Loranger S. S., Mizzen C., Ernst S. G., Allis C. D., Annunziato A. T. Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry. 1997 Jan 21;36(3):469–480. doi: 10.1021/bi962069i. [DOI] [PubMed] [Google Scholar]
  10. Craig J. M., Bickmore W. A. Chromosome bands--flavours to savour. Bioessays. 1993 May;15(5):349–354. doi: 10.1002/bies.950150510. [DOI] [PubMed] [Google Scholar]
  11. Cross S. H., Charlton J. A., Nan X., Bird A. P. Purification of CpG islands using a methylated DNA binding column. Nat Genet. 1994 Mar;6(3):236–244. doi: 10.1038/ng0394-236. [DOI] [PubMed] [Google Scholar]
  12. D'Anna J. A., Gurley L. R., Tobey R. A. Extent of histone modifications and H1(0) content during cell cycle progression in the presence of butyrate. Exp Cell Res. 1983 Sep;147(2):407–417. doi: 10.1016/0014-4827(83)90222-7. [DOI] [PubMed] [Google Scholar]
  13. Fasman K. H., Letovsky S. I., Li P., Cottingham R. W., Kingsbury D. T. The GDB Human Genome Database Anno 1997. Nucleic Acids Res. 1997 Jan 1;25(1):72–81. doi: 10.1093/nar/25.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gosden J., Hanratty D., Starling J., Fantes J., Mitchell A., Porteous D. Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization. Cytogenet Cell Genet. 1991;57(2-3):100–104. doi: 10.1159/000133122. [DOI] [PubMed] [Google Scholar]
  15. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997 Sep 25;389(6649):349–352. doi: 10.1038/38664. [DOI] [PubMed] [Google Scholar]
  16. Grunstein M. Histone function in transcription. Annu Rev Cell Biol. 1990;6:643–678. doi: 10.1146/annurev.cb.06.110190.003235. [DOI] [PubMed] [Google Scholar]
  17. Hebbes T. R., Thorne A. W., Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 1988 May;7(5):1395–1402. doi: 10.1002/j.1460-2075.1988.tb02956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holmquist G. P. Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet. 1992 Jul;51(1):17–37. [PMC free article] [PubMed] [Google Scholar]
  19. Jeppesen P. Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays. 1997 Jan;19(1):67–74. doi: 10.1002/bies.950190111. [DOI] [PubMed] [Google Scholar]
  20. Jeppesen P., Turner B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell. 1993 Jul 30;74(2):281–289. doi: 10.1016/0092-8674(93)90419-q. [DOI] [PubMed] [Google Scholar]
  21. Kingston R. E., Bunker C. A., Imbalzano A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996 Apr 15;10(8):905–920. doi: 10.1101/gad.10.8.905. [DOI] [PubMed] [Google Scholar]
  22. Kleff S., Andrulis E. D., Anderson C. W., Sternglanz R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem. 1995 Oct 20;270(42):24674–24677. doi: 10.1074/jbc.270.42.24674. [DOI] [PubMed] [Google Scholar]
  23. Korenberg J. R., Rykowski M. C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988 May 6;53(3):391–400. doi: 10.1016/0092-8674(88)90159-6. [DOI] [PubMed] [Google Scholar]
  24. Kornberg R. D., Lorch Y. Interplay between chromatin structure and transcription. Curr Opin Cell Biol. 1995 Jun;7(3):371–375. doi: 10.1016/0955-0674(95)80092-1. [DOI] [PubMed] [Google Scholar]
  25. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  26. López-Rodas G., Tordera V., Sánchez del Pino M. M., Franco L. Yeast contains multiple forms of histone acetyltransferase. J Biol Chem. 1989 Nov 15;264(32):19028–19033. [PubMed] [Google Scholar]
  27. Mathew C. G., Goodwin G. H., Johns E. W. Studies on the association of the high mobility group non-histone chromatin proteins with isolated nucleosomes. Nucleic Acids Res. 1979 Jan;6(1):167–179. doi: 10.1093/nar/6.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Migeon B. R., Luo S., Jani M., Jeppesen P. The severe phenotype of females with tiny ring X chromosomes is associated with inability of these chromosomes to undergo X inactivation. Am J Hum Genet. 1994 Sep;55(3):497–504. [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell A., Jeppesen P., Hanratty D., Gosden J. The organisation of repetitive DNA sequences on human chromosomes with respect to the kinetochore analysed using a combination of oligonucleotide primers and CREST anticentromere serum. Chromosoma. 1992 Mar;101(5-6):333–341. doi: 10.1007/BF00346012. [DOI] [PubMed] [Google Scholar]
  30. Nelson D., Covault J., Chalkley R. Segregation of rapidly acetylated histones into a chromatin fraction released from intact nuclei by the action of micrococcal nuclease. Nucleic Acids Res. 1980 Apr 25;8(8):1745–1763. doi: 10.1093/nar/8.8.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Neill L. P., Turner B. M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 1995 Aug 15;14(16):3946–3957. doi: 10.1002/j.1460-2075.1995.tb00066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Paranjape S. M., Kamakaka R. T., Kadonaga J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem. 1994;63:265–297. doi: 10.1146/annurev.bi.63.070194.001405. [DOI] [PubMed] [Google Scholar]
  33. Rooney C. M., Gregory C. D., Rowe M., Finerty S., Edwards C., Rupani H., Rickinson A. B. Endemic Burkitt's lymphoma: phenotypic analysis of tumor biopsy cells and of derived tumor cell lines. J Natl Cancer Inst. 1986 Sep;77(3):681–687. doi: 10.1093/jnci/77.3.681. [DOI] [PubMed] [Google Scholar]
  34. Saccone S., Cacciò S., Kusuda J., Andreozzi L., Bernardi G. Identification of the gene-richest bands in human chromosomes. Gene. 1996 Sep 26;174(1):85–94. doi: 10.1016/0378-1119(96)00392-7. [DOI] [PubMed] [Google Scholar]
  35. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  36. Simpson R. T. Structure of chromatin containing extensively acetylated H3 and H4. Cell. 1978 Apr;13(4):691–699. doi: 10.1016/0092-8674(78)90219-2. [DOI] [PubMed] [Google Scholar]
  37. Singer M. F. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 1982 Mar;28(3):433–434. doi: 10.1016/0092-8674(82)90194-5. [DOI] [PubMed] [Google Scholar]
  38. Sobel R. E., Cook R. G., Perry C. A., Annunziato A. T., Allis C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1237–1241. doi: 10.1073/pnas.92.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Taunton J., Hassig C. A., Schreiber S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996 Apr 19;272(5260):408–411. doi: 10.1126/science.272.5260.408. [DOI] [PubMed] [Google Scholar]
  40. Thorne A. W., Kmiciek D., Mitchelson K., Sautiere P., Crane-Robinson C. Patterns of histone acetylation. Eur J Biochem. 1990 Nov 13;193(3):701–713. doi: 10.1111/j.1432-1033.1990.tb19390.x. [DOI] [PubMed] [Google Scholar]
  41. Turner B. M., Birley A. J., Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 1992 Apr 17;69(2):375–384. doi: 10.1016/0092-8674(92)90417-b. [DOI] [PubMed] [Google Scholar]
  42. Turner B. M. Decoding the nucleosome. Cell. 1993 Oct 8;75(1):5–8. [PubMed] [Google Scholar]
  43. Turner B. M., Fellows G. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur J Biochem. 1989 Jan 15;179(1):131–139. doi: 10.1111/j.1432-1033.1989.tb14530.x. [DOI] [PubMed] [Google Scholar]
  44. Turner B. M., O'Neill L. P., Allan I. M. Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies. FEBS Lett. 1989 Aug 14;253(1-2):141–145. doi: 10.1016/0014-5793(89)80947-0. [DOI] [PubMed] [Google Scholar]
  45. Tyler-Smith C., Willard H. F. Mammalian chromosome structure. Curr Opin Genet Dev. 1993 Jun;3(3):390–397. doi: 10.1016/0959-437x(93)90110-b. [DOI] [PubMed] [Google Scholar]
  46. Vidali G., Boffa L. C., Bradbury E. M., Allfrey V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci U S A. 1978 May;75(5):2239–2243. doi: 10.1073/pnas.75.5.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wu R. S., Panusz H. T., Hatch C. L., Bonner W. M. Histones and their modifications. CRC Crit Rev Biochem. 1986;20(2):201–263. doi: 10.3109/10409238609083735. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES