Abstract
The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to consist of at least 40 nucleotides following the UGA codon. Here we determined the nature of the minimal SECIS required for the in vivo UGA-directed selenocysteine incorporation in E.coli . Our study is based on extensive mutational analysis of the fdhF SECIS DNA located in a lac' Z fusion. We found that the whole stem-loop RNA structure of the E.coli fdhF SECIS previously described is not required for the UGA-directed selenocysteine incorporation in vivo . Rather, only its upper stem-loop structure of 17 nucleotides is necessary on the condition that it is located in a proper distance (11 nucleotides) from the UGA codon. Based on these observations, we present a new model for the minimal E.coli SECIS.
Full Text
The Full Text of this article is available as a PDF (276.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron C., Heider J., Böck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4181–4185. doi: 10.1073/pnas.90.9.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg B. L., Li J., Heider J., Stewart V. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem. 1991 Nov 25;266(33):22380–22385. [PubMed] [Google Scholar]
- Berry M. J., Larsen P. R. Recognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress. Biochem Soc Trans. 1993 Nov;21(4):827–832. doi: 10.1042/bst0210827. [DOI] [PubMed] [Google Scholar]
- Beyer D., Skripkin E., Wadzack J., Nierhaus K. H. How the ribosome moves along the mRNA during protein synthesis. J Biol Chem. 1994 Dec 2;269(48):30713–30717. [PubMed] [Google Scholar]
- Böck A., Forchhammer K., Heider J., Baron C. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci. 1991 Dec;16(12):463–467. doi: 10.1016/0968-0004(91)90180-4. [DOI] [PubMed] [Google Scholar]
- Böck A., Forchhammer K., Heider J., Leinfelder W., Sawers G., Veprek B., Zinoni F. Selenocysteine: the 21st amino acid. Mol Microbiol. 1991 Mar;5(3):515–520. doi: 10.1111/j.1365-2958.1991.tb00722.x. [DOI] [PubMed] [Google Scholar]
- Chen G. F., Fang L., Inouye M. Effect of the relative position of the UGA codon to the unique secondary structure in the fdhF mRNA on its decoding by selenocysteinyl tRNA in Escherichia coli. J Biol Chem. 1993 Nov 5;268(31):23128–23131. [PubMed] [Google Scholar]
- Gesteland R. F., Weiss R. B., Atkins J. F. Recoding: reprogrammed genetic decoding. Science. 1992 Sep 18;257(5077):1640–1641. doi: 10.1126/science.1529352. [DOI] [PubMed] [Google Scholar]
- Heider J., Baron C., Böck A. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 1992 Oct;11(10):3759–3766. doi: 10.1002/j.1460-2075.1992.tb05461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hüttenhofer A., Heider J., Böck A. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome. Nucleic Acids Res. 1996 Oct 15;24(20):3903–3910. doi: 10.1093/nar/24.20.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hüttenhofer A., Westhof E., Böck A. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. RNA. 1996 Apr;2(4):354–366. [PMC free article] [PubMed] [Google Scholar]
- Klug S. J., Hüttenhofer A., Kromayer M., Famulok M. In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6676–6681. doi: 10.1073/pnas.94.13.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kromayer M., Wilting R., Tormay P., Böck A. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J Mol Biol. 1996 Oct 4;262(4):413–420. doi: 10.1006/jmbi.1996.0525. [DOI] [PubMed] [Google Scholar]
- Lee B. J., Worland P. J., Davis J. N., Stadtman T. C., Hatfield D. L. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989 Jun 15;264(17):9724–9727. [PubMed] [Google Scholar]
- Leinfelder W., Zehelein E., Mandrand-Berthelot M. A., Böck A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature. 1988 Feb 25;331(6158):723–725. doi: 10.1038/331723a0. [DOI] [PubMed] [Google Scholar]
- Liu Z., Reches M., Engelberg-Kulka H. A rapid fluorescence bioassay for the determination of selenium on agar plates. Anal Biochem. 1997 Jan 1;244(1):40–44. doi: 10.1006/abio.1996.9857. [DOI] [PubMed] [Google Scholar]
- Low S. C., Berry M. J. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci. 1996 Jun;21(6):203–208. [PubMed] [Google Scholar]
- McFadden J. Recombination in mycobacteria. Mol Microbiol. 1996 Jul;21(2):205–211. doi: 10.1046/j.1365-2958.1996.6271345.x. [DOI] [PubMed] [Google Scholar]
- Reches M., Zhao C., Engelberg-Kulka H. A bioassay based on recombinant DNA technology for determining selenium concentration. Appl Environ Microbiol. 1994 Jan;60(1):45–50. doi: 10.1128/aem.60.1.45-50.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadtman T. C. Biosynthesis and function of selenocysteine-containing enzymes. J Biol Chem. 1991 Sep 5;266(25):16257–16260. [PubMed] [Google Scholar]
- Stadtman T. C. Selenocysteine. Annu Rev Biochem. 1996;65:83–100. doi: 10.1146/annurev.bi.65.070196.000503. [DOI] [PubMed] [Google Scholar]
- Tormay P., Sawers A., Böck A. Role of stoichiometry between mRNA, translation factor SelB and selenocysteyl-tRNA in selenoprotein synthesis. Mol Microbiol. 1996 Sep;21(6):1253–1259. doi: 10.1046/j.1365-2958.1996.881450.x. [DOI] [PubMed] [Google Scholar]
- Zhao C., Reches M., Depalo D., St Germain D. L., Engelberg-Kulka H. A recombinant DNA bio-assay for selenium in blood. Gene. 1994 Oct 21;148(2):351–356. doi: 10.1016/0378-1119(94)90712-9. [DOI] [PubMed] [Google Scholar]
- Zinoni F., Heider J., Böck A. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4660–4664. doi: 10.1073/pnas.87.12.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]