Abstract
The molecular basis for the DNA repair dysfunction observed in mutant Chinese hamster ovary cell lines of X-ray repair cross complementing group 1 (XRCC1) is unknown and the exact role of the XRCC1 protein remains unclear. To help clarify the role of the XRCC1 gene we analyzed four mutant cell lines of this complementation group and a revertant cell line for XRCC1 protein content and for sequence alterations in the XRCC1 coding region. Immunoblot analysis of cellular extracts indicated that each of four mutant lines was lacking XRCC1 protein, whereas the repair-proficient revertant line derived from one of these mutants contained a normal level of XRCC1. Although each of these cell lines expressed XRCC1 mRNA, we found in all cases a distinct point mutation resulting in crucial alterations in the encoded XRCC1 protein sequence of 633 amino acids. Two of the mutations cause non-conservative amino acid changes, Glu102-->Lys and Cys390-->Tyr, at positions that are invariant among hamster, mouse and human XRCC1 sequences and are located in putative functional domains. A third debilitating mutation disrupts RNA splicing, generating multiple transcripts of different length that contain deletions spanning a region of >100 amino acids in the midsection of the XRCC1 coding sequence. A fourth mutation results in a termination codon that shortens the open reading frame to 220 amino acids, however, in the revertant cell line a further mutation in the same codon, Stop221-->Leu, permits translation of a full-length functional variant protein. These mutational data indicate the importance of the putative functional regions in XRCC1, such as the BRCA1 C-terminal (BRCT) domain found in common with BRCA1 and other DNA repair and cell cycle checkpoint proteins, and also regions necessary for interaction with DNA polymerase beta and DNA ligase III.
Full Text
The Full Text of this article is available as a PDF (146.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bork P., Hofmann K., Bucher P., Neuwald A. F., Altschul S. F., Koonin E. V. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 1997 Jan;11(1):68–76. [PubMed] [Google Scholar]
- Burki H. J., Lam C. K., Wood R. D. UV-light-induced mutations in synchronous CHO cells. Mutat Res. 1980 Feb;69(2):347–356. doi: 10.1016/0027-5107(80)90099-8. [DOI] [PubMed] [Google Scholar]
- Caldecott K. W., Aoufouchi S., Johnson P., Shall S. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 1996 Nov 15;24(22):4387–4394. doi: 10.1093/nar/24.22.4387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldecott K. W., McKeown C. K., Tucker J. D., Ljungquist S., Thompson L. H. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol. 1994 Jan;14(1):68–76. doi: 10.1128/mcb.14.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldecott K. W., Thompson L. H. Partial correction of the single-strand break repair defect in the CHO mutant EM9 by electroporated recombinant XRCC1 protein. Ann N Y Acad Sci. 1994 Jul 29;726:336–339. doi: 10.1111/j.1749-6632.1994.tb52844.x. [DOI] [PubMed] [Google Scholar]
- Caldecott K. W., Tucker J. D., Stanker L. H., Thompson L. H. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res. 1995 Dec 11;23(23):4836–4843. doi: 10.1093/nar/23.23.4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldecott K. W., Tucker J. D., Thompson L. H. Construction of human XRCC1 minigenes that fully correct the CHO DNA repair mutant EM9. Nucleic Acids Res. 1992 Sep 11;20(17):4575–4579. doi: 10.1093/nar/20.17.4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callebaut I., Mornon J. P. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 1997 Jan 2;400(1):25–30. doi: 10.1016/s0014-5793(96)01312-9. [DOI] [PubMed] [Google Scholar]
- Carrano A. V., Minkler J. L., Dillehay L. E., Thompson L. H. Incorporated bromodeoxyuridine enhances the sister-chromatid exchange and chromosomal aberration frequencies in an EMS-sensitive Chinese hamster cell line. Mutat Res. 1986 Sep;162(2):233–239. doi: 10.1016/0027-5107(86)90090-4. [DOI] [PubMed] [Google Scholar]
- Critchlow S. E., Bowater R. P., Jackson S. P. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol. 1997 Aug 1;7(8):588–598. doi: 10.1016/s0960-9822(06)00258-2. [DOI] [PubMed] [Google Scholar]
- Dillehay L. E., Thompson L. H., Minkler J. L., Carrano A. V. The relationship between sister-chromatid exchange and perturbations in DNA replication in mutant EM9 and normal CHO cells. Mutat Res. 1983 May;109(2):283–296. doi: 10.1016/0027-5107(83)90053-2. [DOI] [PubMed] [Google Scholar]
- Friedman L. S., Ostermeyer E. A., Szabo C. I., Dowd P., Lynch E. D., Rowell S. E., King M. C. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet. 1994 Dec;8(4):399–404. doi: 10.1038/ng1294-399. [DOI] [PubMed] [Google Scholar]
- Kubota Y., Nash R. A., Klungland A., Schär P., Barnes D. E., Lindahl T. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 1996 Dec 2;15(23):6662–6670. [PMC free article] [PubMed] [Google Scholar]
- Ljungquist S., Kenne K., Olsson L., Sandström M. Altered DNA ligase III activity in the CHO EM9 mutant. Mutat Res. 1994 Mar;314(2):177–186. doi: 10.1016/0921-8777(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Mackey Z. B., Ramos W., Levin D. S., Walter C. A., McCarrey J. R., Tomkinson A. E. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination. Mol Cell Biol. 1997 Feb;17(2):989–998. doi: 10.1128/mcb.17.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nash R. A., Caldecott K. W., Barnes D. E., Lindahl T. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry. 1997 Apr 29;36(17):5207–5211. doi: 10.1021/bi962281m. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson L. H., Bachinski L. L., Stallings R. L., Dolf G., Weber C. A., Westerveld A., Siciliano M. J. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Genomics. 1989 Nov;5(4):670–679. doi: 10.1016/0888-7543(89)90107-9. [DOI] [PubMed] [Google Scholar]
- Thompson L. H., Brookman K. W., Dillehay L. E., Carrano A. V., Mazrimas J. A., Mooney C. L., Minkler J. L. A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat Res. 1982 Aug;95(2-3):427–440. doi: 10.1016/0027-5107(82)90276-7. [DOI] [PubMed] [Google Scholar]
- Thompson L. H., Brookman K. W., Jones N. J., Allen S. A., Carrano A. V. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol. 1990 Dec;10(12):6160–6171. doi: 10.1128/mcb.10.12.6160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson L. H., Fong S., Brookman K. Validation of conditions for efficient detection of HPRT and APRT mutations in suspension-cultured Chinese hamster ovary cells. Mutat Res. 1980 Feb;74(1):21–36. doi: 10.1016/0165-1161(80)90188-0. [DOI] [PubMed] [Google Scholar]
- Thompson L. H., Rubin J. S., Cleaver J. E., Whitmore G. F., Brookman K. A screening method for isolating DNA repair-deficient mutants of CHO cells. Somatic Cell Genet. 1980 May;6(3):391–405. doi: 10.1007/BF01542791. [DOI] [PubMed] [Google Scholar]
- Walter C. A., Trolian D. A., McFarland M. B., Street K. A., Gurram G. R., McCarrey J. R. Xrcc-1 expression during male meiosis in the mouse. Biol Reprod. 1996 Sep;55(3):630–635. doi: 10.1095/biolreprod55.3.630. [DOI] [PubMed] [Google Scholar]
- Werle E., Schneider C., Renner M., Völker M., Fiehn W. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 1994 Oct 11;22(20):4354–4355. doi: 10.1093/nar/22.20.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zdzienicka M. Z., Simons J. W. Mutagen-sensitive cell lines are obtained with a high frequency in V79 Chinese hamster cells. Mutat Res. 1987 Jun;178(2):235–244. doi: 10.1016/0027-5107(87)90274-0. [DOI] [PubMed] [Google Scholar]
- Zdzienicka M. Z., van der Schans G. P., Natarajan A. T., Thompson L. H., Neuteboom I., Simons J. W. A Chinese hamster ovary cell mutant (EM-C11) with sensitivity to simple alkylating agents and a very high level of sister chromatid exchanges. Mutagenesis. 1992 Jul;7(4):265–269. doi: 10.1093/mutage/7.4.265. [DOI] [PubMed] [Google Scholar]
- de Murcia G., Ménissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci. 1994 Apr;19(4):172–176. doi: 10.1016/0968-0004(94)90280-1. [DOI] [PubMed] [Google Scholar]