Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Mar;21(3):257–272. doi: 10.1016/S0006-3495(78)85523-4

Fluorescence changes in isolated broken chloroplasts and the involvement of the electrical double layer.

J D Mills, J Barber
PMCID: PMC1473676  PMID: 630043

Abstract

We studied the effects of a variety of cations on chlorophyll fluorescence yield of broken chloroplasts prepared under carefully controlled ionic conditions. In the absence of light-induced electron transport and associated proton pumping, two types of cation-induced chlorophyll fluorescence changes could be distinguished in broken chloroplasts. These are termed "reversible" and "irreversible" fluorescence yield changes. Reversible fluorescence yield changes are characterized by antagonistic effects of monovalent and divalent cations and are prevented by the presence of 5 mM Mg2+ in the suspending media. Reversible-type fluorescence yield changes show little or no dependence on the structure, lipid solubility, or coordination number of the cation, but depend strictly on the net positive charge carried by the ion. It is proposed that these fluorescence changes are brought about through the interaction of monovalent or divalent cations with an electrical double layer at the interface of the outer surface of the thylakoid membrane and the surrounding aqueous solution. The results are interpreted in terms of the Gouy-Chapman theory of the diffuse double layer, indicating that the thylakoid outer surface bears an excess fixed negative charge density of about 2.5 muC/cm2, or approximately 1 negative charge per 640 A2 of membrane surface. Chlorophyll fluorescence quenching in isolated broken chloroplasts suspended in media containing 5 mM MgCl2 is also observed on addition of certain polyvalent cations to the medium. This type of cation-induced fluorescence change appears to be largely irreversible and may occur through specific binding of the cation to the thylakoid as a result of the high electrostatic attraction exerted by the negatively charged membrane surface.

Full text

PDF
257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber J., Mills J. Control of chlorophyll fluorescence by the diffuse double layer. FEBS Lett. 1976 Oct 1;68(2):288–292. doi: 10.1016/0014-5793(76)80455-3. [DOI] [PubMed] [Google Scholar]
  3. Barber J., Mills J., Love A. Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett. 1977 Mar 1;74(2):174–181. doi: 10.1016/0014-5793(77)80841-7. [DOI] [PubMed] [Google Scholar]
  4. Bazzaz M. B., Govindjee Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts. Environ Lett. 1974;6(1):1–12. doi: 10.1080/00139307409437339. [DOI] [PubMed] [Google Scholar]
  5. Bazzaz M. B., Govindjee Effects of lead chloride on chloroplast reactions. Environ Lett. 1974;6(3):175–191. doi: 10.1080/00139307409437360. [DOI] [PubMed] [Google Scholar]
  6. Gross E. L., Hess S. C. Correlation between calcium ion binding to chloroplast membranes and divalent cation-induced structural changes and changes in chlorophyll a fluorescence. Biochim Biophys Acta. 1974 Mar 29;339(3):334–346. doi: 10.1016/0005-2736(74)90160-6. [DOI] [PubMed] [Google Scholar]
  7. Gross E. L., Packer L. Ion transport and conformational changes in spinach chloroplast grana. I. Osmotic properties and divalent cation-induced volume changes. Arch Biochem Biophys. 1967 Sep;121(3):779–789. doi: 10.1016/0003-9861(67)90067-7. [DOI] [PubMed] [Google Scholar]
  8. Gross E. L., Prasher S. H. Correlation between monovalent cation-induced decreases in chlorophyll a fluorescence and chloroplast structural changes. Arch Biochem Biophys. 1974 Oct;164(2):460–468. doi: 10.1016/0003-9861(74)90056-3. [DOI] [PubMed] [Google Scholar]
  9. Hind G., Nakatani H. Y., Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Homann P. H. Cation effects on the fluorescence of isolated chloroplasts. Plant Physiol. 1969 Jun;44(6):932–936. doi: 10.1104/pp.44.6.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mills J. D., Telfer A., Barber J. Cation control of chlorophyll a fluorescence yield in chloroplasts. Location of cation sensitive sites. Biochim Biophys Acta. 1976 Sep 13;440(3):495–505. doi: 10.1016/0005-2728(76)90037-2. [DOI] [PubMed] [Google Scholar]
  12. Mills J., Barber J. Energy-dependent cation-induced control of chlorophyll a fluorescence in isolated intact chloroplasts. Arch Biochem Biophys. 1975 Sep;170(1):306–314. doi: 10.1016/0003-9861(75)90122-8. [DOI] [PubMed] [Google Scholar]
  13. Murata N. Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta. 1969 Oct 21;189(2):171–181. doi: 10.1016/0005-2728(69)90045-0. [DOI] [PubMed] [Google Scholar]
  14. Murata N. Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts. Biochim Biophys Acta. 1971 Mar 2;226(2):422–432. doi: 10.1016/0005-2728(71)90109-5. [DOI] [PubMed] [Google Scholar]
  15. Murata N., Tashiro H., Takamiya A. Effects of divalent metal ions on chlorophyll a fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta. 1970 Mar 3;197(2):250–256. doi: 10.1016/0005-2728(70)90035-6. [DOI] [PubMed] [Google Scholar]
  16. Vandermeulen D. L., Govindjee Relation of membrane structural changes to energy spillover in oat and spinach chloroplasts: use of fluorescence probes and light scattering. Biochim Biophys Acta. 1974 Oct 18;368(1):61–70. doi: 10.1016/0005-2728(74)90097-8. [DOI] [PubMed] [Google Scholar]
  17. Velthuys B. R. Binding of the inhibitor NH3 to the oxygen-evolving apparatus of spinach chloroplasts. Biochim Biophys Acta. 1975 Sep 8;396(3):392–401. doi: 10.1016/0005-2728(75)90145-0. [DOI] [PubMed] [Google Scholar]
  18. Walz D., Schuldiner S., Avron M. Photoreactions of chloroplasts in a glycine medium. Eur J Biochem. 1971 Oct 14;22(3):439–444. doi: 10.1111/j.1432-1033.1971.tb01562.x. [DOI] [PubMed] [Google Scholar]
  19. Wydrzynski T., Gross E. L., Govindjee Effects of sodium and magnesium cations on the "dark-" and light-induced chlorophyll a fluorescence yields in sucrose-washed spinach chloroplasts. Biochim Biophys Acta. 1975 Jan 31;376(1):151–161. doi: 10.1016/0005-2728(75)90213-3. [DOI] [PubMed] [Google Scholar]
  20. Yamashita T., Butler W. L. Inhibition of the Hill Reaction by Tris and Restoration by Electron Donation to Photosystem II. Plant Physiol. 1969 Mar;44(3):435–438. doi: 10.1104/pp.44.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES