Abstract
It has been shown that, during the S-phase of the cell cycle, the mouse DNA methyltransferase (DNA MTase) is targeted to sites of DNA replication by an amino acid sequence (aa 207-455) lying in the N-terminal domain of the enzyme [Leonhardt, H., Page, A. W., Weier, H. U. and Bestor, T. H. (1992) Cell , 71, 865-873]. In this paper it is shown, by using enhanced green fluorescent protein (EGFP) fusions, that other peptide sequences of DNA MTase are also involved in this targeting. The work focuses on a sequence, downstream of the reported targeting sequence (TS), which is homologous to the Polybromo-1 protein. This motif (designated as PBHD) is separated from the reported targeting sequence by a zinc-binding motif [Bestor , T. H. (1992) EMBO J , 11, 2611-2617]. Primed in situ extension using centromeric-specific primers was used to show that both the host DNA MTase and EGFP fusion proteins containing the targeting sequences were localized to centromeric, but not telomeric, regions during late S-phase and mitosis. Also found was that, in approximately 10% of the S-phase cells, the EGFP fusions did not co-localize with the centromeric regions. Mutants containing either, or both, of these targeting sequences could act as dominant negative mutants against the host DNA MTase. EGFP fusion proteins, containing the reported TS (aa 207-455), were targeted to centromeric regions throughout the mitotic stage which lead to the discovery of a similar behavior of the endogenous DNA MTase although the host MTase showed much less intense staining than in S-phase cells. The biological role of the centromeric localization of DNA MTase during mitosis is currently unknown.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. L. Eukaryotic DNA methyltransferases--structure and function. Bioessays. 1995 Feb;17(2):139–145. doi: 10.1002/bies.950170209. [DOI] [PubMed] [Google Scholar]
- Bestor T. H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992 Jul;11(7):2611–2617. doi: 10.1002/j.1460-2075.1992.tb05326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caiafa P., Mastrantonio S., Attina M., Rispoli M., Reale A., Strom R. Do tightly-bound chromatin proteins play a role in DNA methylation? Biochem Int. 1988 Nov;17(5):863–875. [PubMed] [Google Scholar]
- Caiafa P., Mastrantonio S., Cacace F., Attinà M., Rispoli M., Strom R. Localization, in human placenta, of the tightly bound form of DNA methylase in the higher order of chromatin organization. Biochim Biophys Acta. 1988 Nov 10;951(1):191–200. doi: 10.1016/0167-4781(88)90040-1. [DOI] [PubMed] [Google Scholar]
- Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuang L. S., Ng H. H., Chia J. N., Li B. F. Characterisation of independent DNA and multiple Zn-binding domains at the N terminus of human DNA-(cytosine-5) methyltransferase: modulating the property of a DNA-binding domain by contiguous Zn-binding motifs. J Mol Biol. 1996 Apr 19;257(5):935–948. doi: 10.1006/jmbi.1996.0213. [DOI] [PubMed] [Google Scholar]
- Church K. Replication of chromatin in mouse mammary epithelial cells grown in vitro. Genetics. 1965 Oct;52(4):843–849. doi: 10.1093/genetics/52.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creusot F., Christman J. K. Localization of DNA methyltransferase in the chromatin of Friend erythroleukemia cells. Nucleic Acids Res. 1981 Oct 24;9(20):5359–5381. doi: 10.1093/nar/9.20.5359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dev V. G., Grewal M. S., Miller D. A., Kouri R. E., Hutton J. J., Miller O. J. The quinacrine fluorescence karyotype of Mus musculus and demonstration of strain differences in secondary constrictions. Cytogenetics. 1971;10(6):436–451. doi: 10.1159/000130164. [DOI] [PubMed] [Google Scholar]
- Glickman J. F., Pavlovich J. G., Reich N. O. Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation. J Biol Chem. 1997 Jul 11;272(28):17851–17857. doi: 10.1074/jbc.272.28.17851. [DOI] [PubMed] [Google Scholar]
- Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu T. C., Markvong A. Chromosomes and DNA of Mus: terminal DNA synthetic sequences in three species. Chromosoma. 1975 Aug 11;51(4):311–322. doi: 10.1007/BF00326318. [DOI] [PubMed] [Google Scholar]
- Hübscher U., Pedrali-Noy G., Knust-Kron B., Doerfler W., Spadari S. DNA methyltransferases: activity minigel analysis and determination with DNA covalently bound to a solid matrix. Anal Biochem. 1985 Nov 1;150(2):442–448. doi: 10.1016/0003-2697(85)90533-0. [DOI] [PubMed] [Google Scholar]
- Kipling D., Wilson H. E., Thomson E. J., Cooke H. J. YAC cloning Mus musculus telomeric DNA: physical, genetic, in situ and STS markers for the distal telomere of chromosome 10. Hum Mol Genet. 1995 Jun;4(6):1007–1014. doi: 10.1093/hmg/4.6.1007. [DOI] [PubMed] [Google Scholar]
- Leonhardt H., Bestor T. H. Structure, function and regulation of mammalian DNA methyltransferase. EXS. 1993;64:109–119. doi: 10.1007/978-3-0348-9118-9_5. [DOI] [PubMed] [Google Scholar]
- Leonhardt H., Page A. W., Weier H. U., Bestor T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992 Nov 27;71(5):865–873. doi: 10.1016/0092-8674(92)90561-p. [DOI] [PubMed] [Google Scholar]
- Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
- Miller O. J. Is the centromeric heterochromatin of Mus musculus late replicating? Chromosoma. 1976 Apr 21;55(2):165–170. doi: 10.1007/BF01798346. [DOI] [PubMed] [Google Scholar]
- Nicolas R. H., Goodwin G. H. Molecular cloning of polybromo, a nuclear protein containing multiple domains including five bromodomains, a truncated HMG-box, and two repeats of a novel domain. Gene. 1996 Oct 10;175(1-2):233–240. doi: 10.1016/0378-1119(96)82845-9. [DOI] [PubMed] [Google Scholar]
- Schmitt F., Oakeley E. J., Jost J. P. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem. 1997 Jan 17;272(3):1534–1540. doi: 10.1074/jbc.272.3.1534. [DOI] [PubMed] [Google Scholar]
- Selig S., Ariel M., Goitein R., Marcus M., Cedar H. Regulation of mouse satellite DNA replication time. EMBO J. 1988 Feb;7(2):419–426. doi: 10.1002/j.1460-2075.1988.tb02829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shockett P., Difilippantonio M., Hellman N., Schatz D. G. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6522–6526. doi: 10.1073/pnas.92.14.6522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szyf M. The DNA methylation machinery as a target for anticancer therapy. Pharmacol Ther. 1996;70(1):1–37. doi: 10.1016/0163-7258(96)00002-2. [DOI] [PubMed] [Google Scholar]
- Tucker K. L., Talbot D., Lee M. A., Leonhardt H., Jaenisch R. Complementation of methylation deficiency in embryonic stem cells by a DNA methyltransferase minigene. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12920–12925. doi: 10.1073/pnas.93.23.12920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vissel B., Choo K. H. Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics. 1989 Oct;5(3):407–414. doi: 10.1016/0888-7543(89)90003-7. [DOI] [PubMed] [Google Scholar]
- Vogel M. C., Papadopoulos T., Müller-Hermelink H. K., Drahovsky D., Pfeifer G. P. Intracellular distribution of DNA methyltransferase during the cell cycle. FEBS Lett. 1988 Aug 15;236(1):9–13. doi: 10.1016/0014-5793(88)80275-8. [DOI] [PubMed] [Google Scholar]
- Woodcock D. M., Adams J. K., Cooper I. A. Characteristics of enzymatic DNA methylation in cultured cells of human and hamster origin, and the effect of DNA replication inhibition. Biochim Biophys Acta. 1982 Jan 26;696(1):15–22. doi: 10.1016/0167-4781(82)90004-5. [DOI] [PubMed] [Google Scholar]
- Yoder J. A., Yen R. W., Vertino P. M., Bestor T. H., Baylin S. B. New 5' regions of the murine and human genes for DNA (cytosine-5)-methyltransferase. J Biol Chem. 1996 Dec 6;271(49):31092–31097. doi: 10.1074/jbc.271.49.31092. [DOI] [PubMed] [Google Scholar]
- de Lange T., Shiue L., Myers R. M., Cox D. R., Naylor S. L., Killery A. M., Varmus H. E. Structure and variability of human chromosome ends. Mol Cell Biol. 1990 Feb;10(2):518–527. doi: 10.1128/mcb.10.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]