Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Mar;21(3):203–216. doi: 10.1016/S0006-3495(78)85520-9

Swimming speed distributions of bull spermatozoa as determined by quasi-elastic light scattering.

F R Hallett, T Craig, J Marsh
PMCID: PMC1473680  PMID: 630041

Abstract

88 semen samples from 39 bulls have been investigated by the quasi-elastic light scattering technique. Normal, defective, and dead cells each yielded characteristic autocorrelation functions. The form of these functions indicates that the swimming speed distribution of normal cells is a gamma distribution with two degrees of freedom while that for defective or circular swimmers is a gamma distribution with one degree of freedom. The resulting analysis of the experimental autocorrelation functions yields the fraction of the sample that is normal, the fraction that is defective, and the average speed of each group. The average helical swimming speed of normal cells was found to be 384 micron/s, while the average trajectory speed of the circular swimmers was found to be 103 micron/s. The overall quality of the semen samples as determined by light scattering is compared to quality determination on the same samples by technicians from the artificial insemination industry.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berne B. J., Nossal R. Inelastic light scattering by large structured particles. Biophys J. 1974 Nov;14(11):865–880. doi: 10.1016/S0006-3495(74)85955-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boon J. P., Nossal R., Chien S. H. Light-scattering spectrum due to wiggling motions of bacteria. Biophys J. 1974 Nov;14(11):847–864. doi: 10.1016/s0006-3495(74)85954-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooke D. F., Hallett F. R., Barker C. A. Motility evaluation of bull spermatozoa by photon correlation spectroscopy. J Mechanochem Cell Motil. 1976;3(4):219–223. [PubMed] [Google Scholar]
  4. Jouannet P., Volochine B., Deguent P., Serres C., David G. Light scattering determination of various characteristic paramenters of spermatozoa motility in a serie of human sperm. Andrologia. 1977 Jan-Mar;9(1):36–49. doi: 10.1111/j.1439-0272.1977.tb01257.x. [DOI] [PubMed] [Google Scholar]
  5. Katz D. F., Dott H. M. Methods of measuring swimming speed of spermatozoa. J Reprod Fertil. 1975 Nov;45(2):263–272. doi: 10.1530/jrf.0.0450263. [DOI] [PubMed] [Google Scholar]
  6. Nossal R., Chen S. H. Effects of chemoattractants on the motility of Escherichia coli. Nat New Biol. 1973 Aug 22;244(138):253–254. doi: 10.1038/newbio244253a0. [DOI] [PubMed] [Google Scholar]
  7. RIKMENSPOEL R., van HERPEN, EIJKHOUT P. Cinematographic observations of the movements of bull sperm cells. Phys Med Biol. 1960 Oct;5:167–181. doi: 10.1088/0031-9155/5/2/306. [DOI] [PubMed] [Google Scholar]
  8. Rikmenspoel R., Jacklet A. C., Orris S. E., Lindemann C. B. Control of bull sperm motility. Effects of viscosity, KCN and thiourea. J Mechanochem Cell Motil. 1973 May;2(1):7–24. [PubMed] [Google Scholar]
  9. Rikmenspoel R. The tail movement of bull spermatozoa. Observations and model calculations. Biophys J. 1965 Jul;5(4):365–392. doi: 10.1016/S0006-3495(65)86723-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schaefer D. W., Berne B. J. Number fluctuation spectroscopy of motile microorganisms. Biophys J. 1975 Aug;15(8):785–794. doi: 10.1016/S0006-3495(75)85855-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schaefer D. W. Dynamics of number fluctuations: motile microorganisms. Science. 1973 Jun 22;180(4092):1293–1295. doi: 10.1126/science.180.4092.1293. [DOI] [PubMed] [Google Scholar]
  12. Shimizu H., Matsumoto G. Light scattering study on motile spermatozoa. IEEE Trans Biomed Eng. 1977 Mar;24(2):153–157. doi: 10.1109/TBME.1977.326120. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES