Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Mar;21(3):195–202. doi: 10.1016/S0006-3495(78)85519-2

Quantum yield and image contrast of bacteriochlorophyll monolayers in photoelectron microscopy.

R B Barnes, J Amend, W R Sistrom, O H Griffith
PMCID: PMC1473685  PMID: 630040

Abstract

The photoelectron quantum yield spectrum of bacteriochlorophyll aGg (Bchl a ) from Rhodospirillum rubrum was determined in order to evaluate the possibility of mapping photoreceptor distribution and organization in bacterial chromatophores. The quantum yield is on the order of 1 X 10(-3) electrons/incident photon at 180 nm and decreases to 2.5 X 10(-5) electrons/incident photon at 230 nm. Photoelectron micrographs confirm the high contrast predicted between monolayers of Bchl a against a lipid background (calcium arachidate). A significant contrast difference is found between the two monolayer orientations, demonstrating that photoelectron microscopy is a sensitive detector of asymmetry in Bch1 a monolayers.

Full text

PDF
195

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clayton R. K., Clayton B. J. Relations between pigments and proteins in the photosynthetic membranes of Rhodopseudomonas spheroides. Biochim Biophys Acta. 1972 Dec 14;283(3):492–504. doi: 10.1016/0005-2728(72)90265-4. [DOI] [PubMed] [Google Scholar]
  2. Dam R. J., Burke C. A., Griffith O. H. Photoelectron quantum yields of the amino acids. Biophys J. 1974 Jun;14(6):467–472. doi: 10.1016/S0006-3495(74)85927-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dam R. J., Kongslie K. F., Griffith O. H. Photoelectron quantum yields and photoelectron microscopy of chlorophyll and chlorophyllin. Photochem Photobiol. 1975 Dec;22(6):265–268. doi: 10.1111/j.1751-1097.1975.tb06747.x. [DOI] [PubMed] [Google Scholar]
  4. Dam R. J., Kongslie K. F., Griffith O. H. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes. Biophys J. 1974 Dec;14(12):933–939. doi: 10.1016/S0006-3495(74)85960-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GRIFFITHS M., STANIER R. Y. Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas spheroides. J Gen Microbiol. 1956 Jul;14(3):698–715. doi: 10.1099/00221287-14-3-698. [DOI] [PubMed] [Google Scholar]
  6. Katz J. J., Strain H. H., Harkness A. L., Studier M. H., Svec W. A., Janson T. R., Cope B. T. Esterifying alcohols in the chlorophylls of purple photosynthetic bacteria. A new chlorophyll, bacteriochlorophyll (gg), all-trans-geranylgeranyl bacteriochlorophyllide a. J Am Chem Soc. 1972 Nov 1;94(22):7938–7939. doi: 10.1021/ja00777a054. [DOI] [PubMed] [Google Scholar]
  7. Kim W. S. Complete fractionation of bacteriochlorophyll and its degradation products. Bibl Laeger. 1966 Mar 14;112(3):392–402. doi: 10.1016/0926-6585(66)90243-3. [DOI] [PubMed] [Google Scholar]
  8. Sistrom W. R. The spectrum of bacteriochlorophyll in vivo: observations on mutants of Rhodopseudomonas spheroides unable to grow photosynthetically. Photochem Photobiol. 1966 Nov-Dec;5(11):845–856. doi: 10.1111/j.1751-1097.1966.tb05931.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES