Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 15;26(4):942–947. doi: 10.1093/nar/26.4.942

An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast.

G Bellí 1, E Garí 1, L Piedrafita 1, M Aldea 1, E Herrero 1
PMCID: PMC147371  PMID: 9461451

Abstract

We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO- driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.

Full Text

The Full Text of this article is available as a PDF (188.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudin-Baillieu A., Guillemet E., Cullin C., Lacroute F. Construction of a yeast strain deleted for the TRP1 promoter and coding region that enhances the efficiency of the polymerase chain reaction-disruption method. Yeast. 1997 Mar 30;13(4):353–356. doi: 10.1002/(SICI)1097-0061(19970330)13:4<353::AID-YEA86>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  2. Blondel M., Mann C. G2 cyclins are required for the degradation of G1 cyclins in yeast. Nature. 1996 Nov 21;384(6606):279–282. doi: 10.1038/384279a0. [DOI] [PubMed] [Google Scholar]
  3. Deckert J., Rodriguez Torres A. M., Simon J. T., Zitomer R. S. Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Nov;15(11):6109–6117. doi: 10.1128/mcb.15.11.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Degenkolb J., Takahashi M., Ellestad G. A., Hillen W. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor. Antimicrob Agents Chemother. 1991 Aug;35(8):1591–1595. doi: 10.1128/aac.35.8.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dujon B. The yeast genome project: what did we learn? Trends Genet. 1996 Jul;12(7):263–270. doi: 10.1016/0168-9525(96)10027-5. [DOI] [PubMed] [Google Scholar]
  6. Edmondson D. G., Smith M. M., Roth S. Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 1996 May 15;10(10):1247–1259. doi: 10.1101/gad.10.10.1247. [DOI] [PubMed] [Google Scholar]
  7. Friesen H., Hepworth S. R., Segall J. An Ssn6-Tup1-dependent negative regulatory element controls sporulation-specific expression of DIT1 and DIT2 in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Jan;17(1):123–134. doi: 10.1128/mcb.17.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garí E., Piedrafita L., Aldea M., Herrero E. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast. 1997 Jul;13(9):837–848. doi: 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  9. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  11. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  12. Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gossen M., Freundlieb S., Bender G., Müller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995 Jun 23;268(5218):1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
  14. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell. 1992 Feb 21;68(4):709–719. doi: 10.1016/0092-8674(92)90146-4. [DOI] [PubMed] [Google Scholar]
  15. Oliver S. G. Yeast as a navigational aid in genome analysis. 1996 Kathleen Barton-Wright Memorial Lecture. Microbiology. 1997 May;143(Pt 5):1483–1487. doi: 10.1099/00221287-143-5-1483. [DOI] [PubMed] [Google Scholar]
  16. Pérez-Ortín J. E., Estruch F., Matallana E., Franco L. Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res. 1987 Sep 11;15(17):6937–6956. doi: 10.1093/nar/15.17.6937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Redd M. J., Arnaud M. B., Johnson A. D. A complex composed of tup1 and ssn6 represses transcription in vitro. J Biol Chem. 1997 Apr 25;272(17):11193–11197. doi: 10.1074/jbc.272.17.11193. [DOI] [PubMed] [Google Scholar]
  18. Rine J. Gene overexpression in studies of Saccharomyces cerevisiae. Methods Enzymol. 1991;194:239–251. doi: 10.1016/0076-6879(91)94019-9. [DOI] [PubMed] [Google Scholar]
  19. Song W., Treich I., Qian N., Kuchin S., Carlson M. SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol Cell Biol. 1996 Jan;16(1):115–120. doi: 10.1128/mcb.16.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Treitel M. A., Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132–3136. doi: 10.1073/pnas.92.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tyers M., Tokiwa G., Nash R., Futcher B. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 1992 May;11(5):1773–1784. doi: 10.1002/j.1460-2075.1992.tb05229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tzamarias D., Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 1995 Apr 1;9(7):821–831. doi: 10.1101/gad.9.7.821. [DOI] [PubMed] [Google Scholar]
  23. Tzamarias D., Struhl K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature. 1994 Jun 30;369(6483):758–761. doi: 10.1038/369758a0. [DOI] [PubMed] [Google Scholar]
  24. Varanasi U. S., Klis M., Mikesell P. B., Trumbly R. J. The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol. 1996 Dec;16(12):6707–6714. doi: 10.1128/mcb.16.12.6707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wahi M., Johnson A. D. Identification of genes required for alpha 2 repression in Saccharomyces cerevisiae. Genetics. 1995 May;140(1):79–90. doi: 10.1093/genetics/140.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES