Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 15;26(4):988–993. doi: 10.1093/nar/26.4.988

Embryonic stem cell gene targeting using bacteriophage lambda vectors generated by phage-plasmid recombination.

T Tsuzuki 1, D E Rancourt 1
PMCID: PMC147375  PMID: 9461458

Abstract

Targeted mutagenesis is an extremely useful experimental approach in molecular medicine, allowing the generation of specialized animals that are mutant for any gene of interest. Currently the rate determining step in any gene targeting experiment is construction of the targeting vector (TV). In order to streamline gene targeting methods and avoid problems encountered with plasmid TVs, we describe the direct application of lambda phage in targeted mutagenesis. The recombination-proficient phage vector lambda2TK permits generation of TVs by conventional restriction-ligation or recombination-mediated methods. The resulting lambdaTV DNA can then be cleaved with restriction endonucleases to release the bacteriophage arms and can subsequently be electroporated directly into ES cells to yield gene targets. We demonstrate that in vivo phage-plasmid recombination can be used to introduce neo and lacZ - neo mutations into precise positions within a lambda2TK subclone via double crossover recombination. We describe two methods for eliminating single crossover recombinants, spi selection and size restriction, both of which result in phage TVs bearing double crossover insertions. Thus TVs can be easily and quickly generated in bacteriophage without plasmid subcloning and with little genomic sequence or restriction site information.

Full Text

The Full Text of this article is available as a PDF (195.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capecchi M. R. Altering the genome by homologous recombination. Science. 1989 Jun 16;244(4910):1288–1292. doi: 10.1126/science.2660260. [DOI] [PubMed] [Google Scholar]
  2. Capecchi M. R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989 Mar;5(3):70–76. doi: 10.1016/0168-9525(89)90029-2. [DOI] [PubMed] [Google Scholar]
  3. Chisaka O., Capecchi M. R. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature. 1991 Apr 11;350(6318):473–479. doi: 10.1038/350473a0. [DOI] [PubMed] [Google Scholar]
  4. Deng C., Capecchi M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol. 1992 Aug;12(8):3365–3371. doi: 10.1128/mcb.12.8.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gorry P., Lufkin T., Dierich A., Rochette-Egly C., Décimo D., Dollé P., Mark M., Durand B., Chambon P. The cellular retinoic acid binding protein I is dispensable. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9032–9036. doi: 10.1073/pnas.91.19.9032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haggård-Ljungquist E., Barreiro V., Calendar R., Kurnit D. M., Cheng H. The P2 phage old gene: sequence, transcription and translational control. Gene. 1989 Dec 21;85(1):25–33. doi: 10.1016/0378-1119(89)90460-5. [DOI] [PubMed] [Google Scholar]
  7. Hanks M., Wurst W., Anson-Cartwright L., Auerbach A. B., Joyner A. L. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science. 1995 Aug 4;269(5224):679–682. doi: 10.1126/science.7624797. [DOI] [PubMed] [Google Scholar]
  8. Hasty P., Ramírez-Solis R., Krumlauf R., Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature. 1991 Mar 21;350(6315):243–246. doi: 10.1038/350243a0. [DOI] [PubMed] [Google Scholar]
  9. Humphries M. M., Rancourt D., Farrar G. J., Kenna P., Hazel M., Bush R. A., Sieving P. A., Sheils D. M., McNally N., Creighton P. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet. 1997 Feb;15(2):216–219. doi: 10.1038/ng0297-216. [DOI] [PubMed] [Google Scholar]
  10. Lutz C. T., Hollifield W. C., Seed B., Davie J. M., Huang H. V. Syrinx 2A: an improved lambda phage vector designed for screening DNA libraries by recombination in vivo. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4379–4383. doi: 10.1073/pnas.84.13.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mansour S. L., Thomas K. R., Capecchi M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988 Nov 24;336(6197):348–352. doi: 10.1038/336348a0. [DOI] [PubMed] [Google Scholar]
  12. Mansour S. L., Thomas K. R., Deng C. X., Capecchi M. R. Introduction of a lacZ reporter gene into the mouse int-2 locus by homologous recombination. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7688–7692. doi: 10.1073/pnas.87.19.7688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mombaerts P., Clarke A. R., Hooper M. L., Tonegawa S. Creation of a large genomic deletion at the T-cell antigen receptor beta-subunit locus in mouse embryonic stem cells by gene targeting. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3084–3087. doi: 10.1073/pnas.88.8.3084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nehls M., Messerle M., Sirulnik A., Smith A. J., Boehm T. Two large insert vectors, lambda PS and lambda KO, facilitate rapid mapping and targeted disruption of mammalian genes. Biotechniques. 1994 Oct;17(4):770–775. [PubMed] [Google Scholar]
  15. Ramírez-Solis R., Liu P., Bradley A. Chromosome engineering in mice. Nature. 1995 Dec 14;378(6558):720–724. doi: 10.1038/378720a0. [DOI] [PubMed] [Google Scholar]
  16. Rancourt D. E., Tsuzuki T., Capecchi M. R. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev. 1995 Jan 1;9(1):108–122. doi: 10.1101/gad.9.1.108. [DOI] [PubMed] [Google Scholar]
  17. Seed B. Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo. Nucleic Acids Res. 1983 Apr 25;11(8):2427–2445. doi: 10.1093/nar/11.8.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thomas K. R., Capecchi M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987 Nov 6;51(3):503–512. doi: 10.1016/0092-8674(87)90646-5. [DOI] [PubMed] [Google Scholar]
  20. Tsien J. Z., Chen D. F., Gerber D., Tom C., Mercer E. H., Anderson D. J., Mayford M., Kandel E. R., Tonegawa S. Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996 Dec 27;87(7):1317–1326. doi: 10.1016/s0092-8674(00)81826-7. [DOI] [PubMed] [Google Scholar]
  21. Umene K., Shimada K., Tsuzuki T., Mori R., Takagi Y. Lambda bacteriophage-mediated transduction of ColE1 deoxyribonucleic acid having a lambda bacteriophage-cohesive end site: selection of packageable-length deoxyribonucleic acid. J Bacteriol. 1979 Sep;139(3):738–747. doi: 10.1128/jb.139.3.738-747.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wei L. N., Tsao J. L., Chu Y. S., Jeannotte L., Nguyen-Huu M. C. Molecular cloning and transcriptional mapping of the mouse cellular retinoic acid-binding protein gene. DNA Cell Biol. 1990 Sep;9(7):471–478. doi: 10.1089/dna.1990.9.471. [DOI] [PubMed] [Google Scholar]
  23. Zheng H., Wilson J. H. Gene targeting in normal and amplified cell lines. Nature. 1990 Mar 8;344(6262):170–173. doi: 10.1038/344170a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES