Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 1;26(5):1135–1143. doi: 10.1093/nar/26.5.1135

A survey of 178 NF-Y binding CCAAT boxes.

R Mantovani 1
PMCID: PMC147377  PMID: 9469818

Abstract

The CCAAT box is one of the most common elements in eukaryotic promoters, found in the forward or reverse orientation. Among the various DNA binding proteins that interact with this sequence, only NF-Y (CBF, HAP2/3/4/5) has been shown to absolutely require all 5 nt. Analysis of a database with 178 bona fide NF-Y binding sites in 96 unrelated promoters confirms this need and points to specific additional flanking nucleotides (C, Pu, Pu on the 5'-side and C/G, A/G, G,A/C, G on the 3'-side) required for efficient binding. The frequency of CCAAT boxes appears to be relatively higher in TATA-less promoters, particularly in the reverse ATTGG orientation. In TATA-containing promoters the CCAAT box is preferentially located in the -80/-100 region (mean position -89) and is not found nearer to the Start site than -50. In TATA-less promoters it is usually closer to the +1 signal (at -66 on average) and is sometimes present in proximity to the Cap site. The consensus and location of NF-Y binding sites parallel almost perfectly a previous general statistical study on CCAAT boxes in 502 unrelated promoters. This is an indication that NF-Y is the major, if not the sole, CCAAT box recognizing protein and that it might serve different roles in TATA-containing and TATA-less promoters.

Full Text

The Full Text of this article is available as a PDF (375.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi N., Kobayashi M., Koyama H. Cell cycle-dependent regulation of the mouse DNA topoisomerase IIalpha gene promoter. Biochem Biophys Res Commun. 1997 Jan 3;230(1):105–109. doi: 10.1006/bbrc.1996.5893. [DOI] [PubMed] [Google Scholar]
  2. Albani D., Robert L. S. Cloning and characterization of a Brassica napus gene encoding a homologue of the B subunit of a heteromeric CCAAT-binding factor. Gene. 1995 Dec 29;167(1-2):209–213. doi: 10.1016/0378-1119(95)00680-x. [DOI] [PubMed] [Google Scholar]
  3. Alonso C. R., Pesce C. G., Kornblihtt A. R. The CCAAT-binding proteins CP1 and NF-I cooperate with ATF-2 in the transcription of the fibronectin gene. J Biol Chem. 1996 Sep 6;271(36):22271–22279. doi: 10.1074/jbc.271.36.22271. [DOI] [PubMed] [Google Scholar]
  4. Arcot S. S., Flemington E. K., Deininger P. L. The human thymidine kinase gene promoter. Deletion analysis and specific protein binding. J Biol Chem. 1989 Feb 5;264(4):2343–2349. [PubMed] [Google Scholar]
  5. Aufiero B., Neufeld E. J., Orkin S. H. Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7757–7761. doi: 10.1073/pnas.91.16.7757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barberis A., Superti-Furga G., Busslinger M. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell. 1987 Jul 31;50(3):347–359. doi: 10.1016/0092-8674(87)90489-2. [DOI] [PubMed] [Google Scholar]
  7. Baxevanis A. D., Arents G., Moudrianakis E. N., Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res. 1995 Jul 25;23(14):2685–2691. doi: 10.1093/nar/23.14.2685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bellorini M., Dantonel J. C., Yoon J. B., Roeder R. G., Tora L., Mantovani R. The major histocompatibility complex class II Ea promoter requires TFIID binding to an initiator sequence. Mol Cell Biol. 1996 Feb;16(2):503–512. doi: 10.1128/mcb.16.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bellorini M., Zemzoumi K., Farina A., Berthelsen J., Piaggio G., Mantovani R. Cloning and expression of human NF-YC. Gene. 1997 Jul 1;193(1):119–125. doi: 10.1016/s0378-1119(97)00109-1. [DOI] [PubMed] [Google Scholar]
  10. Benoist C., Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol. 1990;8:681–715. doi: 10.1146/annurev.iy.08.040190.003341. [DOI] [PubMed] [Google Scholar]
  11. Benoist C., O'Hare K., Breathnach R., Chambon P. The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res. 1980 Jan 11;8(1):127–142. doi: 10.1093/nar/8.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bienz M., Pelham H. R. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell. 1986 Jun 6;45(5):753–760. doi: 10.1016/0092-8674(86)90789-0. [DOI] [PubMed] [Google Scholar]
  13. Boucher P. D., Piechocki M. P., Hines R. N. Partial characterization of the human CYP1A1 negatively acting transcription factor and mutational analysis of its cognate DNA recognition sequence. Mol Cell Biol. 1995 Sep;15(9):5144–5151. doi: 10.1128/mcb.15.9.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bowman S. B., Zaman Z., Collinson L. P., Brown A. J., Dawes I. W. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system. Mol Gen Genet. 1992 Jan;231(2):296–303. doi: 10.1007/BF00279803. [DOI] [PubMed] [Google Scholar]
  15. Brouillet A., Darbouy M., Okamoto T., Chobert M. N., Lahuna O., Garlatti M., Goodspeed D., Laperche Y. Functional characterization of the rat gamma-glutamyl transpeptidase promoter that is expressed and regulated in the liver and hepatoma cells. J Biol Chem. 1994 May 27;269(21):14878–14884. [PubMed] [Google Scholar]
  16. Brown S. T., Miranda G. A., Galic Z., Hartman I. Z., Lyon C. J., Aguilera R. J. Regulation of the RAG-1 promoter by the NF-Y transcription factor. J Immunol. 1997 Jun 1;158(11):5071–5074. [PubMed] [Google Scholar]
  17. Bucher P., Trifonov E. N. CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn. 1988 Jun;5(6):1231–1236. doi: 10.1080/07391102.1988.10506466. [DOI] [PubMed] [Google Scholar]
  18. Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol. 1990 Apr 20;212(4):563–578. doi: 10.1016/0022-2836(90)90223-9. [DOI] [PubMed] [Google Scholar]
  19. Chang Z. F., Liu C. J. Human thymidine kinase CCAAT-binding protein is NF-Y, whose A subunit expression is serum-dependent in human IMR-90 diploid fibroblasts. J Biol Chem. 1994 Jul 8;269(27):17893–17898. [PubMed] [Google Scholar]
  20. Chen H., Kinsey J. A. Purification of a heteromeric CCAAT binding protein from Neurospora crassa. Mol Gen Genet. 1995 Nov 27;249(3):301–308. doi: 10.1007/BF00290531. [DOI] [PubMed] [Google Scholar]
  21. Chodosh L. A., Baldwin A. S., Carthew R. W., Sharp P. A. Human CCAAT-binding proteins have heterologous subunits. Cell. 1988 Apr 8;53(1):11–24. doi: 10.1016/0092-8674(88)90483-7. [DOI] [PubMed] [Google Scholar]
  22. Collins M., Leaner V. D., Madikizela M., Parker M. I. Regulation of the human alpha 2(1) procollagen gene by sequences adjacent to the CCAAT box. Biochem J. 1997 Feb 15;322(Pt 1):199–206. doi: 10.1042/bj3220199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Currie R. A., Eckel R. H. Characterization of a high affinity octamer transcription factor binding site in the human lipoprotein lipase promoter. Arch Biochem Biophys. 1992 Nov 1;298(2):630–639. doi: 10.1016/0003-9861(92)90459-a. [DOI] [PubMed] [Google Scholar]
  24. Dang V. D., Bohn C., Bolotin-Fukuhara M., Daignan-Fornier B. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol. 1996 Apr;178(7):1842–1849. doi: 10.1128/jb.178.7.1842-1849.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Dang V. D., Valens M., Bolotin-Fukuhara M., Daignan-Fornier B. Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor. Mol Microbiol. 1996 Nov;22(4):681–692. doi: 10.1046/j.1365-2958.1996.d01-1715.x. [DOI] [PubMed] [Google Scholar]
  26. Danilition S. L., Frederickson R. M., Taylor C. Y., Miyamoto N. G. Transcription factor binding and spacing constraints in the human beta-actin proximal promoter. Nucleic Acids Res. 1991 Dec 25;19(24):6913–6922. doi: 10.1093/nar/19.24.6913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. DiLiberto M., Lai Z. C., Fei H., Childs G. Developmental control of promoter-specific factors responsible for the embryonic activation and inactivation of the sea urchin early histone H3 gene. Genes Dev. 1989 Jul;3(7):973–985. doi: 10.1101/gad.3.7.973. [DOI] [PubMed] [Google Scholar]
  28. Dong J. M., Smith P., Hall C., Lim L. Promoter region of the transcriptional unit for human alpha 1-chimaerin, a neuron-specific GTPase-activating protein for p21rac. Eur J Biochem. 1995 Feb 1;227(3):636–646. doi: 10.1111/j.1432-1033.1995.tb20183.x. [DOI] [PubMed] [Google Scholar]
  29. Dorn A., Bollekens J., Staub A., Benoist C., Mathis D. A multiplicity of CCAAT box-binding proteins. Cell. 1987 Sep 11;50(6):863–872. doi: 10.1016/0092-8674(87)90513-7. [DOI] [PubMed] [Google Scholar]
  30. Dorn A., Fehling H. J., Koch W., Le Meur M., Gerlinger P., Benoist C., Mathis D. B-cell control region at the 5' end of a major histocompatibility complex class II gene: sequences and factors. Mol Cell Biol. 1988 Oct;8(10):3975–3987. doi: 10.1128/mcb.8.10.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Efstratiadis A., Posakony J. W., Maniatis T., Lawn R. M., O'Connell C., Spritz R. A., DeRiel J. K., Forget B. G., Weissman S. M., Slightom J. L. The structure and evolution of the human beta-globin gene family. Cell. 1980 Oct;21(3):653–668. doi: 10.1016/0092-8674(80)90429-8. [DOI] [PubMed] [Google Scholar]
  32. Ericsson J., Jackson S. M., Kim J. B., Spiegelman B. M., Edwards P. A. Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene. J Biol Chem. 1997 Mar 14;272(11):7298–7305. doi: 10.1074/jbc.272.11.7298. [DOI] [PubMed] [Google Scholar]
  33. Faber M., Sealy L. Rous sarcoma virus enhancer factor I is a ubiquitous CCAAT transcription factor highly related to CBF and NF-Y. J Biol Chem. 1990 Dec 25;265(36):22243–22254. [PubMed] [Google Scholar]
  34. Feriotto G., Mischiati C., Bianchi N., Rutigliano C., Giacomini P., Gambari R. Sequencing of an upstream region of the human HLA-DRA gene containing X' and Y' boxes. Nucleic Acids Res. 1995 May 25;23(10):1671–1678. doi: 10.1093/nar/23.10.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Filatov D., Thelander L. Role of a proximal NF-Y binding promoter element in S phase-specific expression of mouse ribonucleotide reductase R2 gene. J Biol Chem. 1995 Oct 20;270(42):25239–25243. doi: 10.1074/jbc.270.42.25239. [DOI] [PubMed] [Google Scholar]
  36. Flattery-O'Brien J. A., Grant C. M., Dawes I. W. Stationary-phase regulation of the Saccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5- and STRE-binding elements. Mol Microbiol. 1997 Jan;23(2):303–312. doi: 10.1046/j.1365-2958.1997.2121581.x. [DOI] [PubMed] [Google Scholar]
  37. Framson P., Bornstein P. A serum response element and a binding site for NF-Y mediate the serum response of the human thrombospondin 1 gene. J Biol Chem. 1993 Mar 5;268(7):4989–4996. [PubMed] [Google Scholar]
  38. Gallinari P., La Bella F., Heintz N. Characterization and purification of H1TF2, a novel CCAAT-binding protein that interacts with a histone H1 subtype-specific consensus element. Mol Cell Biol. 1989 Apr;9(4):1566–1575. doi: 10.1128/mcb.9.4.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Goding C. R., Temperley S. M., Fisher F. Multiple transcription factors interact with the adenovirus-2 EII-late promoter: evidence for a novel CCAAT recognition factor. Nucleic Acids Res. 1987 Oct 12;15(19):7761–7780. doi: 10.1093/nar/15.19.7761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Goldsmith M. E., Madden M. J., Morrow C. S., Cowan K. H. A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene. J Biol Chem. 1993 Mar 15;268(8):5856–5860. [PubMed] [Google Scholar]
  41. Greene J. M., Larin Z., Taylor I. C., Prentice H., Gwinn K. A., Kingston R. E. Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol Cell Biol. 1987 Oct;7(10):3646–3655. doi: 10.1128/mcb.7.10.3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Gu Z., Plaza S., Perros M., Cziepluch C., Rommelaere J., Cornelis J. J. NF-Y controls transcription of the minute virus of mice P4 promoter through interaction with an unusual binding site. J Virol. 1995 Jan;69(1):239–246. doi: 10.1128/jvi.69.1.239-246.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Guan G., Dai P. H., Osborne T. F., Kim J. B., Shechter I. Multiple sequence elements are involved in the transcriptional regulation of the human squalene synthase gene. J Biol Chem. 1997 Apr 11;272(15):10295–10302. doi: 10.1074/jbc.272.15.10295. [DOI] [PubMed] [Google Scholar]
  44. Gumucio D. L., Heilstedt-Williamson H., Gray T. A., Tarlé S. A., Shelton D. A., Tagle D. A., Slightom J. L., Goodman M., Collins F. S. Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human gamma and epsilon globin genes. Mol Cell Biol. 1992 Nov;12(11):4919–4929. doi: 10.1128/mcb.12.11.4919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hahn S., Guarente L. Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science. 1988 Apr 15;240(4850):317–321. doi: 10.1126/science.2832951. [DOI] [PubMed] [Google Scholar]
  46. Hahn S., Pinkham J., Wei R., Miller R., Guarente L. The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol. 1988 Feb;8(2):655–663. doi: 10.1128/mcb.8.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hasan S., Koda T., Kakinuma M. An upstream NF-Y-binding site is required for transcriptional activation from the hst promoter in F9 embryonal carcinoma cells. J Biol Chem. 1994 Oct 7;269(40):25042–25048. [PubMed] [Google Scholar]
  48. Hatamochi A., Golumbek P. T., Van Schaftingen E., de Crombrugghe B. A CCAAT DNA binding factor consisting of two different components that are both required for DNA binding. J Biol Chem. 1988 Apr 25;263(12):5940–5947. [PubMed] [Google Scholar]
  49. Herzog C. E., Zwelling L. A. Evaluation of a potential regulatory role for inverted CCAAT boxes in the human topoisomerase II alpha promoter. Biochem Biophys Res Commun. 1997 Mar 27;232(3):608–612. doi: 10.1006/bbrc.1997.6267. [DOI] [PubMed] [Google Scholar]
  50. Heussler V. T., Eichhorn M., Dobbelaere D. A. Cloning of a full-length cDNA encoding bovine interleukin 4 by the polymerase chain reaction. Gene. 1992 May 15;114(2):273–278. doi: 10.1016/0378-1119(92)90587-f. [DOI] [PubMed] [Google Scholar]
  51. Hooft van Huijsduijnen R. A., Bollekens J., Dorn A., Benoist C., Mathis D. Properties of a CCAAT box-binding protein. Nucleic Acids Res. 1987 Sep 25;15(18):7265–7282. doi: 10.1093/nar/15.18.7265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hooft van Huijsduijnen R., Li X. Y., Black D., Matthes H., Benoist C., Mathis D. Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF) subunits. EMBO J. 1990 Oct;9(10):3119–3127. doi: 10.1002/j.1460-2075.1990.tb07509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Huang L., Malone C. L., Stinski M. F. A human cytomegalovirus early promoter with upstream negative and positive cis-acting elements: IE2 negates the effect of the negative element, and NF-Y binds to the positive element. J Virol. 1994 Apr;68(4):2108–2117. doi: 10.1128/jvi.68.4.2108-2117.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Huet X., Rech J., Plet A., Vié A., Blanchard J. M. Cyclin A expression is under negative transcriptional control during the cell cycle. Mol Cell Biol. 1996 Jul;16(7):3789–3798. doi: 10.1128/mcb.16.7.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hung H. L., High K. A. Liver-enriched transcription factor HNF-4 and ubiquitous factor NF-Y are critical for expression of blood coagulation factor X. J Biol Chem. 1996 Jan 26;271(4):2323–2331. doi: 10.1074/jbc.271.4.2323. [DOI] [PubMed] [Google Scholar]
  56. Hunt C., Calderwood S. Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene. 1990 Mar 15;87(2):199–204. doi: 10.1016/0378-1119(90)90302-8. [DOI] [PubMed] [Google Scholar]
  57. Isaacs R. J., Harris A. L., Hickson I. D. Regulation of the human topoisomerase IIalpha gene promoter in confluence-arrested cells. J Biol Chem. 1996 Jul 12;271(28):16741–16747. doi: 10.1074/jbc.271.28.16741. [DOI] [PubMed] [Google Scholar]
  58. Ishimaru F., Mari B., Shipp M. A. The type 2 CD10/neutral endopeptidase 24.11 promoter: functional characterization and tissue-specific regulation by CBF/NF-Y isoforms. Blood. 1997 Jun 1;89(11):4136–4145. [PubMed] [Google Scholar]
  59. Ishisaki A., Murayama T., Ballagi A. E., Funa K. Nuclear factor Y controls the basal transcription activity of the mouse platelet-derived-growth-factor beta-receptor gene. Eur J Biochem. 1997 May 15;246(1):142–146. doi: 10.1111/j.1432-1033.1997.t01-2-00142.x. [DOI] [PubMed] [Google Scholar]
  60. Jackson S. M., Ericsson J., Osborne T. F., Edwards P. A. NF-Y has a novel role in sterol-dependent transcription of two cholesterogenic genes. J Biol Chem. 1995 Sep 15;270(37):21445–21448. doi: 10.1074/jbc.270.37.21445. [DOI] [PubMed] [Google Scholar]
  61. Johnson D. G., Ohtani K., Nevins J. R. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 1994 Jul 1;8(13):1514–1525. doi: 10.1101/gad.8.13.1514. [DOI] [PubMed] [Google Scholar]
  62. Jones K. A., Yamamoto K. R., Tjian R. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell. 1985 Sep;42(2):559–572. doi: 10.1016/0092-8674(85)90113-8. [DOI] [PubMed] [Google Scholar]
  63. Karsenty G., Golumbek P., de Crombrugghe B. Point mutations and small substitution mutations in three different upstream elements inhibit the activity of the mouse alpha 2(I) collagen promoter. J Biol Chem. 1988 Sep 25;263(27):13909–13915. [PubMed] [Google Scholar]
  64. Karsenty G., de Crombrugghe B. Two different negative and one positive regulatory factors interact with a short promoter segment of the alpha 1 (I) collagen gene. J Biol Chem. 1990 Jun 15;265(17):9934–9942. [PubMed] [Google Scholar]
  65. Kato M., Aoyama A., Naruse F., Kobayashi T., Tsukagoshi N. An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol Gen Genet. 1997 Mar 26;254(2):119–126. doi: 10.1007/s004380050399. [DOI] [PubMed] [Google Scholar]
  66. Katula K. S., Wright K. L., Paul H., Surman D. R., Nuckolls F. J., Smith J. W., Ting J. P., Yates J., Cogswell J. P. Cyclin-dependent kinase activation and S-phase induction of the cyclin B1 gene are linked through the CCAAT elements. Cell Growth Differ. 1997 Jul;8(7):811–820. [PubMed] [Google Scholar]
  67. Keng T., Guarente L. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9113–9117. doi: 10.1073/pnas.84.24.9113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kern M. J., Woodward J. G. The same CCAAT box-binding factor binds to the promoter of two coordinately regulated major histocompatibility complex class II genes. Mol Cell Biol. 1991 Jan;11(1):578–581. doi: 10.1128/mcb.11.1.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kim C. G., Sheffery M. Physical characterization of the purified CCAAT transcription factor, alpha-CP1. J Biol Chem. 1990 Aug 5;265(22):13362–13369. [PubMed] [Google Scholar]
  70. Kim I. S., Sinha S., de Crombrugghe B., Maity S. N. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol. 1996 Aug;16(8):4003–4013. doi: 10.1128/mcb.16.8.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Landschulz W. H., Johnson P. F., Adashi E. Y., Graves B. J., McKnight S. L. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev. 1988 Jul;2(7):786–800. doi: 10.1101/gad.2.7.786. [DOI] [PubMed] [Google Scholar]
  72. Li-Weber M., Davydov I. V., Krafft H., Krammer P. H. The role of NF-Y and IRF-2 in the regulation of human IL-4 gene expression. J Immunol. 1994 Nov 1;153(9):4122–4133. [PubMed] [Google Scholar]
  73. Li X. Y., Mantovani R., Hooft van Huijsduijnen R., Andre I., Benoist C., Mathis D. Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Res. 1992 Mar 11;20(5):1087–1091. doi: 10.1093/nar/20.5.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Li Z., Kalasapudi S. R., Childs G. Isolation and characterization of cDNAs encoding the sea urchin (Strongylocentrotus purpuratus) homologue of the CCAAT binding protein NF-Y A subunit. Nucleic Acids Res. 1993 Sep 25;21(19):4639–4639. doi: 10.1093/nar/21.19.4639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Lu C. C., Yen T. S. Activation of the hepatitis B virus S promoter by transcription factor NF-Y via a CCAAT element. Virology. 1996 Nov 15;225(2):387–394. doi: 10.1006/viro.1996.0613. [DOI] [PubMed] [Google Scholar]
  76. Lu S. C., Bensadoun A. Identification of the 5' regulatory elements of avian lipoprotein lipase gene: synergistic effect of multiple factors. Biochim Biophys Acta. 1993 Dec 14;1216(3):375–384. doi: 10.1016/0167-4781(93)90004-w. [DOI] [PubMed] [Google Scholar]
  77. Lum L. S., Sultzman L. A., Kaufman R. J., Linzer D. I., Wu B. J. A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter. Mol Cell Biol. 1990 Dec;10(12):6709–6717. doi: 10.1128/mcb.10.12.6709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Luo W., Skalnik D. G. CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91phox promoter. J Biol Chem. 1996 Jul 26;271(30):18203–18210. doi: 10.1074/jbc.271.30.18203. [DOI] [PubMed] [Google Scholar]
  79. Maity S. N., Vuorio T., de Crombrugghe B. The B subunit of a rat heteromeric CCAAT-binding transcription factor shows a striking sequence identity with the yeast Hap2 transcription factor. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5378–5382. doi: 10.1073/pnas.87.14.5378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Maity S. N., de Crombrugghe B. Biochemical analysis of the B subunit of the heteromeric CCAAT-binding factor. A DNA-binding domain and a subunit interaction domain are specified by two separate segments. J Biol Chem. 1992 Apr 25;267(12):8286–8292. [PubMed] [Google Scholar]
  81. Mantovani R., Li X. Y., Pessara U., Hooft van Huisjduijnen R., Benoist C., Mathis D. Dominant negative analogs of NF-YA. J Biol Chem. 1994 Aug 12;269(32):20340–20346. [PubMed] [Google Scholar]
  82. Mantovani R., Pessara U., Tronche F., Li X. Y., Knapp A. M., Pasquali J. L., Benoist C., Mathis D. Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcription. EMBO J. 1992 Sep;11(9):3315–3322. doi: 10.1002/j.1460-2075.1992.tb05410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Mantovani R., Superti-Furga G., Gilman J., Ottolenghi S. The deletion of the distal CCAAT box region of the A gamma-globin gene in black HPFH abolishes the binding of the erythroid specific protein NFE3 and of the CCAAT displacement protein. Nucleic Acids Res. 1989 Aug 25;17(16):6681–6691. doi: 10.1093/nar/17.16.6681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Martinelli R., Heintz N. H1TF2A, the large subunit of a heterodimeric, glutamine-rich CCAAT-binding transcription factor involved in histone H1 cell cycle regulation. Mol Cell Biol. 1994 Dec;14(12):8322–8332. doi: 10.1128/mcb.14.12.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Marziali G., Perrotti E., Ilari R., Testa U., Coccia E. M., Battistini A. Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation. Mol Cell Biol. 1997 Mar;17(3):1387–1395. doi: 10.1128/mcb.17.3.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Matsubasa T., Takiguchi M., Matsuda I., Mori M. Rat argininosuccinate lyase promoter: the dyad-symmetric CCAAT box sequence CCAATTGG in the promoter is recognized by NF-Y. J Biochem. 1994 Nov;116(5):1044–1055. doi: 10.1093/oxfordjournals.jbchem.a124626. [DOI] [PubMed] [Google Scholar]
  87. McGlynn L. K., Mueller C. R., Begbie M., Notley C. R., Lillicrap D. Role of the liver-enriched transcription factor hepatocyte nuclear factor 1 in transcriptional regulation of the factor V111 gene. Mol Cell Biol. 1996 May;16(5):1936–1945. doi: 10.1128/mcb.16.5.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. McNabb D. S., Xing Y., Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 1995 Jan 1;9(1):47–58. doi: 10.1101/gad.9.1.47. [DOI] [PubMed] [Google Scholar]
  89. Moriuchi H., Moriuchi M., Cohen J. I. The varicella-zoster virus immediate-early 62 promoter contains a negative regulatory element that binds transcriptional factor NF-Y. Virology. 1995 Dec 1;214(1):256–258. doi: 10.1006/viro.1995.9932. [DOI] [PubMed] [Google Scholar]
  90. Mulder W., Scholten I. H., de Boer R. W., Grivell L. A. Sequence of the HAP3 transcription factor of Kluyveromyces lactis predicts the presence of a novel 4-cysteine zinc-finger motif. Mol Gen Genet. 1994 Oct 17;245(1):96–106. doi: 10.1007/BF00279755. [DOI] [PubMed] [Google Scholar]
  91. Murakami Y., Ikeda U., Shimada K., Kawakami K. Promoter of the Na,K-ATPase alpha3 subunit gene is composed of cis elements to which NF-Y and Sp1/Sp3 bind in rat cardiocytes. Biochim Biophys Acta. 1997 Jun 26;1352(3):311–324. doi: 10.1016/s0167-4781(97)00032-8. [DOI] [PubMed] [Google Scholar]
  92. Nakshatri H., Bhat-Nakshatri P., Currie R. A. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem. 1996 Nov 15;271(46):28784–28791. doi: 10.1074/jbc.271.46.28784. [DOI] [PubMed] [Google Scholar]
  93. Neufeld E. J., Skalnik D. G., Lievens P. M., Orkin S. H. Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nat Genet. 1992 Apr;1(1):50–55. doi: 10.1038/ng0492-50. [DOI] [PubMed] [Google Scholar]
  94. Ng S. W., Eder J. P., Schnipper L. E., Chan V. T. Molecular cloning and characterization of the promoter for the Chinese hamster DNA topoisomerase II alpha gene. J Biol Chem. 1995 Oct 27;270(43):25850–25858. doi: 10.1074/jbc.270.43.25850. [DOI] [PubMed] [Google Scholar]
  95. Noda C., Fukushima C., Fujiwara T., Matsuda K., Kobune Y., Ichihara A. Developmental regulation of rat serine dehydratase gene expression: evidence for the presence of a repressor in fetal hepatocytes. Biochim Biophys Acta. 1994 Mar 1;1217(2):163–173. doi: 10.1016/0167-4781(94)90030-2. [DOI] [PubMed] [Google Scholar]
  96. North S., Espanel X., Tavitian B., Brun G., Gillet G. Two distinct regulatory elements control quail cdc2 transcription: possible involvement in the control of retinoblast differentiation. Cell Growth Differ. 1996 Mar;7(3):339–349. [PubMed] [Google Scholar]
  97. Novak E. M., Bydlowski S. P. NFY transcription factor binds to regulatory element AIC and transactivates the human apolipoprotein A-I promoter in HEPG2 cells. Biochem Biophys Res Commun. 1997 Feb 3;231(1):140–143. doi: 10.1006/bbrc.1997.6056. [DOI] [PubMed] [Google Scholar]
  98. O'Rourke D., O'Hare P. Mutually exclusive binding of two cellular factors within a critical promoter region of the gene for the IE110k protein of herpes simplex virus. J Virol. 1993 Dec;67(12):7201–7214. doi: 10.1128/jvi.67.12.7201-7214.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Olesen J. T., Fikes J. D., Guarente L. The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol Cell Biol. 1991 Feb;11(2):611–619. doi: 10.1128/mcb.11.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Olesen J., Hahn S., Guarente L. Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell. 1987 Dec 24;51(6):953–961. doi: 10.1016/0092-8674(87)90582-4. [DOI] [PubMed] [Google Scholar]
  101. Osada S., Daimon S., Nishihara T., Imagawa M. Identification of DNA binding-site preferences for nuclear factor I-A. FEBS Lett. 1996 Jul 15;390(1):44–46. doi: 10.1016/0014-5793(96)00622-9. [DOI] [PubMed] [Google Scholar]
  102. Osada S., Yamamoto H., Nishihara T., Imagawa M. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem. 1996 Feb 16;271(7):3891–3896. doi: 10.1074/jbc.271.7.3891. [DOI] [PubMed] [Google Scholar]
  103. Osawa H., Robey R. B., Printz R. L., Granner D. K. Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene. J Biol Chem. 1996 Jul 19;271(29):17296–17303. doi: 10.1074/jbc.271.29.17296. [DOI] [PubMed] [Google Scholar]
  104. Osborne T. F., Gil G., Goldstein J. L., Brown M. S. Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element. J Biol Chem. 1988 Mar 5;263(7):3380–3387. [PubMed] [Google Scholar]
  105. Papagiannopoulos P., Andrianopoulos A., Sharp J. A., Davis M. A., Hynes M. J. The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol Gen Genet. 1996 Jun 24;251(4):412–421. doi: 10.1007/BF02172369. [DOI] [PubMed] [Google Scholar]
  106. Papazafiri P., Ogami K., Ramji D. P., Nicosia A., Monaci P., Cladaras C., Zannis V. I. Promoter elements and factors involved in hepatic transcription of the human ApoA-I gene positive and negative regulators bind to overlapping sites. J Biol Chem. 1991 Mar 25;266(9):5790–5797. [PubMed] [Google Scholar]
  107. Pinkham J. L., Olesen J. T., Guarente L. P. Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol. 1987 Feb;7(2):578–585. doi: 10.1128/mcb.7.2.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Quitschke W. W., Lin Z. Y., DePonti-Zilli L., Paterson B. M. The beta actin promoter. High levels of transcription depend upon a CCAAT binding factor. J Biol Chem. 1989 Jun 5;264(16):9539–9546. [PubMed] [Google Scholar]
  109. Raymondjean M., Cereghini S., Yaniv M. Several distinct "CCAAT" box binding proteins coexist in eukaryotic cells. Proc Natl Acad Sci U S A. 1988 Feb;85(3):757–761. doi: 10.1073/pnas.85.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Raymondjean M., Pichard A. L., Gregori C., Ginot F., Kahn A. Interplay of an original combination of factors: C/EBP, NFY, HNF3, and HNF1 in the rat aldolase B gene promoter. Nucleic Acids Res. 1991 Nov 25;19(22):6145–6153. doi: 10.1093/nar/19.22.6145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Reed G. E., Kirchner J. E., Carr L. G. NF-Y activates mouse tryptophan hydroxylase transcription. Brain Res. 1995 Jun 5;682(1-2):1–12. doi: 10.1016/0006-8993(95)00284-w. [DOI] [PubMed] [Google Scholar]
  112. Roder K., Wolf S. S., Beck K. F., Schweizer M. Cooperative binding of NF-Y and Sp1 at the DNase I-hypersensitive site, fatty acid synthase insulin-responsive element 1, located at -500 in the rat fatty acid synthase promoter. J Biol Chem. 1997 Aug 22;272(34):21616–21624. doi: 10.1074/jbc.272.34.21616. [DOI] [PubMed] [Google Scholar]
  113. Roder K., Wolf S. S., Beck K. F., Sickinger S., Schweizer M. NF-Y binds to the inverted CCAAT box, an essential element for cAMP-dependent regulation of the rat fatty acid synthase (FAS) gene. Gene. 1997 Jan 3;184(1):21–26. doi: 10.1016/s0378-1119(96)00568-9. [DOI] [PubMed] [Google Scholar]
  114. Ronchi A., Bellorini M., Mongelli N., Mantovani R. CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA. Nucleic Acids Res. 1995 Nov 25;23(22):4565–4572. doi: 10.1093/nar/23.22.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Rosenkrantz M., Kell C. S., Pennell E. A., Devenish L. J. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1. Mol Microbiol. 1994 Jul;13(1):119–131. doi: 10.1111/j.1365-2958.1994.tb00407.x. [DOI] [PubMed] [Google Scholar]
  116. Roy B., Lee A. S. Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/BiP promoter. Mol Cell Biol. 1995 Apr;15(4):2263–2274. doi: 10.1128/mcb.15.4.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Sato R., Inoue J., Kawabe Y., Kodama T., Takano T., Maeda M. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem. 1996 Oct 25;271(43):26461–26464. doi: 10.1074/jbc.271.43.26461. [DOI] [PubMed] [Google Scholar]
  118. Schneider J. C., Guarente L. Regulation of the yeast CYT1 gene encoding cytochrome c1 by HAP1 and HAP2/3/4. Mol Cell Biol. 1991 Oct;11(10):4934–4942. doi: 10.1128/mcb.11.10.4934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Schoneich J., Lee J. L., Mansky P., Sheffery M., Yang S. Y. The pentanucleotide ATTGG, the "inverted CCAAT," is an essential element for HLA class I gene transcription. J Immunol. 1997 May 15;158(10):4788–4796. [PubMed] [Google Scholar]
  120. Schorpp M., Kugler W., Wagner U., Ryffel G. U. Hepatocyte-specific promoter element HP1 of the Xenopus albumin gene interacts with transcriptional factors of mammalian hepatocytes. J Mol Biol. 1988 Jul 20;202(2):307–320. doi: 10.1016/0022-2836(88)90460-3. [DOI] [PubMed] [Google Scholar]
  121. Schweizer-Groyer G., Groyer A., Cadepond F., Grange T., Baulieu E. E., Pictet R. Expression from the tyrosine aminotransferase promoter (nt -350 to +1) is liver-specific and dependent on the binding of both liver-enriched and ubiquitous trans-acting factors. Nucleic Acids Res. 1994 May 11;22(9):1583–1592. doi: 10.1093/nar/22.9.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Serra E., Zemzoumi K., Trolet J., Capron A., Dissous C. Functional analysis of the Schistosoma mansoni 28 kDa glutathione S-transferase gene promoter: involvement of SMNF-Y transcription factor in multimeric complexes. Mol Biochem Parasitol. 1996 Dec 2;83(1):69–80. doi: 10.1016/s0166-6851(96)02751-x. [DOI] [PubMed] [Google Scholar]
  123. Shimizu M., Ichikawa E., Inoue U., Nakamura T., Nakajima T., Nojima H., Okayama H., Oda K. The G1/S boundary-specific enhancer of the rat cdc2 promoter. Mol Cell Biol. 1995 May;15(5):2882–2892. doi: 10.1128/mcb.15.5.2882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Sinha S., Kim I. S., Sohn K. Y., de Crombrugghe B., Maity S. N. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol. 1996 Jan;16(1):328–337. doi: 10.1128/mcb.16.1.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Sinha S., Maity S. N., Lu J., de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1624–1628. doi: 10.1073/pnas.92.5.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Sittisombut N. Two distinct nuclear factors bind the conserved regulatory sequences of a rabbit major histocompatibility complex class II gene. Mol Cell Biol. 1988 May;8(5):2034–2041. doi: 10.1128/mcb.8.5.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Spanopoulou E., Giguere V., Grosveld F. The functional domains of the murine Thy-1 gene promoter. Mol Cell Biol. 1991 Apr;11(4):2216–2228. doi: 10.1128/mcb.11.4.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Stalder J., Wirthmüller U., Beck J., Gruber A., Meyerhof W., Knöchel W., Weber R. Primary structure and evolutionary relationship between the adult alpha-globin genes and their 5'-flanking regions of Xenopus laevis and Xenopus tropicalis. J Mol Evol. 1988 Dec;28(1-2):64–71. doi: 10.1007/BF02143498. [DOI] [PubMed] [Google Scholar]
  129. Stewart M. J., Dipple K. M., Stewart T. R., Crabb D. W. The role of nuclear factor NF-Y/CP1 in the transcriptional regulation of the human aldehyde dehydrogenase 2-encoding gene. Gene. 1996 Sep 16;173(2):155–161. doi: 10.1016/0378-1119(96)00068-6. [DOI] [PubMed] [Google Scholar]
  130. Superti-Furga G., Barberis A., Schaffner G., Busslinger M. The -117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene. EMBO J. 1988 Oct;7(10):3099–3107. doi: 10.1002/j.1460-2075.1988.tb03176.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Swendeman S. L., Spielholz C., Jenkins N. A., Gilbert D. J., Copeland N. G., Sheffery M. Characterization of the genomic structure, chromosomal location, promoter, and development expression of the alpha-globin transcription factor CP2. J Biol Chem. 1994 Apr 15;269(15):11663–11671. [PubMed] [Google Scholar]
  132. Tezuka K. i., Denhardt D. T., Rodan G. A., Harada S. i. Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor. J Biol Chem. 1996 Sep 13;271(37):22713–22717. doi: 10.1074/jbc.271.37.22713. [DOI] [PubMed] [Google Scholar]
  133. Tjian R., Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. doi: 10.1016/0092-8674(94)90227-5. [DOI] [PubMed] [Google Scholar]
  134. Tommasi S., Swiderski P. M., Tu Y., Kaplan B. E., Pfeifer G. P. Inhibition of transcription factor binding by ultraviolet-induced pyrimidine dimers. Biochemistry. 1996 Dec 10;35(49):15693–15703. doi: 10.1021/bi962117z. [DOI] [PubMed] [Google Scholar]
  135. Trawick J. D., Wright R. M., Poyton R. O. Transcription of yeast COX6, the gene for cytochrome c oxidase subunit VI, is dependent on heme and on the HAP2 gene. J Biol Chem. 1989 Apr 25;264(12):7005–7008. [PubMed] [Google Scholar]
  136. Tronche F., Rollier A., Sourdive D., Cereghini S., Yaniv M. NFY or a related CCAAT binding factor can be replaced by other transcriptional activators for co-operation with HNF1 in driving the rat albumin promoter in vivo. J Mol Biol. 1991 Nov 5;222(1):31–43. doi: 10.1016/0022-2836(91)90735-o. [DOI] [PubMed] [Google Scholar]
  137. Trueblood C. E., Wright R. M., Poyton R. O. Differential regulation of the two genes encoding Saccharomyces cerevisiae cytochrome c oxidase subunit V by heme and the HAP2 and REO1 genes. Mol Cell Biol. 1988 Oct;8(10):4537–4540. doi: 10.1128/mcb.8.10.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Turco E., Manfras B. J., Ge L., Rudert W. A., Trucco M. The X boxes from promoters of HLA class II B genes at different loci do not complete for nuclear protein-specific binding. Immunogenetics. 1990;32(2):117–128. doi: 10.1007/BF00210449. [DOI] [PubMed] [Google Scholar]
  139. Uchiumi T., Longo D. L., Ferris D. K. Cell cycle regulation of the human polo-like kinase (PLK) promoter. J Biol Chem. 1997 Apr 4;272(14):9166–9174. doi: 10.1074/jbc.272.14.9166. [DOI] [PubMed] [Google Scholar]
  140. Ueda A., Yoshimura T. Characterization of cis-acting elements of the gene for macrophage-stimulating protein from the human. The involvement of positive and negative regulatory elements. J Biol Chem. 1996 Aug 23;271(34):20265–20272. doi: 10.1074/jbc.271.34.20265. [DOI] [PubMed] [Google Scholar]
  141. Umek R. M., Friedman A. D., McKnight S. L. CCAAT-enhancer binding protein: a component of a differentiation switch. Science. 1991 Jan 18;251(4991):288–292. doi: 10.1126/science.1987644. [DOI] [PubMed] [Google Scholar]
  142. Viville S., Jongeneel V., Koch W., Mantovani R., Benoist C., Mathis D. The E alpha promoter: a linker-scanning analysis. J Immunol. 1991 May 1;146(9):3211–3217. [PubMed] [Google Scholar]
  143. Vuorio T., Maity S. N., de Crombrugghe B. Purification and molecular cloning of the "A" chain of a rat heteromeric CCAAT-binding protein. Sequence identity with the yeast HAP3 transcription factor. J Biol Chem. 1990 Dec 25;265(36):22480–22486. [PubMed] [Google Scholar]
  144. Wandersee N. J., Ferris R. C., Ginder G. D. Intronic and flanking sequences are required to silence enhancement of an embryonic beta-type globin gene. Mol Cell Biol. 1996 Jan;16(1):236–246. doi: 10.1128/mcb.16.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Wolffe A. P., Tafuri S., Ranjan M., Familari M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 1992 Apr;4(4):290–298. [PubMed] [Google Scholar]
  146. Wright K. L., Moore T. L., Vilen B. J., Brown A. M., Ting J. P. Major histocompatibility complex class II-associated invariant chain gene expression is up-regulated by cooperative interactions of Sp1 and NF-Y. J Biol Chem. 1995 Sep 8;270(36):20978–20986. doi: 10.1074/jbc.270.36.20978. [DOI] [PubMed] [Google Scholar]
  147. Wright T. M., Farber J. M. 5' regulatory region of a novel cytokine gene mediates selective activation by interferon gamma. J Exp Med. 1991 Feb 1;173(2):417–422. doi: 10.1084/jem.173.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Wuarin J., Mueller C., Schibler U. A ubiquitous CCAAT factor is required for efficient in vitro transcription from the mouse albumin promoter. J Mol Biol. 1990 Aug 20;214(4):865–874. doi: 10.1016/0022-2836(90)90341-I. [DOI] [PubMed] [Google Scholar]
  149. Xing Y., Fikes J. D., Guarente L. Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J. 1993 Dec;12(12):4647–4655. doi: 10.1002/j.1460-2075.1993.tb06153.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Xing Y., Zhang S., Olesen J. T., Rich A., Guarente L. Subunit interaction in the CCAAT-binding heteromeric complex is mediated by a very short alpha-helix in HAP2. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3009–3013. doi: 10.1073/pnas.91.8.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Yanagawa Y., Chen J. C., Hsu L. C., Yoshida A. The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. J Biol Chem. 1995 Jul 21;270(29):17521–17527. doi: 10.1074/jbc.270.29.17521. [DOI] [PubMed] [Google Scholar]
  152. Yost S. E., Shewchuk B., Hardison R. Nuclear protein-binding sites in a transcriptional control region of the rabbit alpha-globin gene. Mol Cell Biol. 1993 Sep;13(9):5439–5449. doi: 10.1128/mcb.13.9.5439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Yu L., Wu Q., Yang C. P., Horwitz S. B. Coordination of transcription factors, NF-Y and C/EBP beta, in the regulation of the mdr1b promoter. Cell Growth Differ. 1995 Dec;6(12):1505–1512. [PubMed] [Google Scholar]
  154. Zachow K. R., Conklin K. F. CArG, CCAAT, and CCAAT-like protein binding sites in avian retrovirus long terminal repeat enhancers. J Virol. 1992 Apr;66(4):1959–1970. doi: 10.1128/jvi.66.4.1959-1970.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Zemzoumi K., Serra E., Mantovani R., Trolet J., Capron A., Dissous C. Cloning of Schistosoma mansoni transcription factor NF-YA subunit: phylogenic conservation of the HAP-2 homology domain. Mol Biochem Parasitol. 1996 May;77(2):161–172. doi: 10.1016/0166-6851(96)02590-x. [DOI] [PubMed] [Google Scholar]
  156. Zorbas H., Rein T., Krause A., Hoffmann K., Winnacker E. L. Nuclear factor I (NF I) binds to an NF I-type site but not to the CCAAT site in the human alpha-globin gene promoter. J Biol Chem. 1992 Apr 25;267(12):8478–8484. [PubMed] [Google Scholar]
  157. Zwicker J., Gross C., Lucibello F. C., Truss M., Ehlert F., Engeland K., Müller R. Cell cycle regulation of cdc25C transcription is mediated by the periodic repression of the glutamine-rich activators NF-Y and Sp1. Nucleic Acids Res. 1995 Oct 11;23(19):3822–3830. doi: 10.1093/nar/23.19.3822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Zwicker J., Lucibello F. C., Wolfraim L. A., Gross C., Truss M., Engeland K., Müller R. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 1995 Sep 15;14(18):4514–4522. doi: 10.1002/j.1460-2075.1995.tb00130.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. van Ginkel P. R., Hsiao K. M., Schjerven H., Farnham P. J. E2F-mediated growth regulation requires transcription factor cooperation. J Biol Chem. 1997 Jul 18;272(29):18367–18374. doi: 10.1074/jbc.272.29.18367. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES