Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 1;26(5):1337–1344. doi: 10.1093/nar/26.5.1337

Dissecting the key recognition features of the MS2 bacteriophage translational repression complex.

H Lago 1, S A Fonseca 1, J B Murray 1, N J Stonehouse 1, P G Stockley 1
PMCID: PMC147387  PMID: 9469846

Abstract

The MS2 RNA operator capsid offers an unparalleled opportunity to study sequence-specific protein-protein and RNA-protein interactions in molecular detail. RNA molecules encompassing the minimal translational operator recognition elements can be soaked into crystals of RNA-free coat protein shells, allowing the RNA to access the interior of the capsids and make contact with the operator binding sites. Correct interpretation of these structural studies depends critically on functional analysis in solution to confirm that the interactions seen in the crystal are not an artefact of the unusual approach used to generate the RNA-protein complexes. Here we present a series of in vivo and in vitro functional assays, using coat proteins carrying single amino acid substitutions at residues which either interact with the operator RNA or are involved in stabilizing the conformation of the FG loop, the site of the major quasi-equivalent conformational change. Variant operator RNAs have been assayed for coat protein affinity in vitro. The results reveal the robustness of the operator-coat protein interaction and the requirement for both halves of a protein dimer to contact RNA in order to achieve tight binding. They also suggest that there may be a direct link between the conformation of the FG loop and RNA binding.

Full Text

The Full Text of this article is available as a PDF (243.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baidya N., Uhlenbeck O. C. The role of 2'-hydroxyl groups in an RNA-protein interaction. Biochemistry. 1995 Sep 26;34(38):12363–12368. doi: 10.1021/bi00038a033. [DOI] [PubMed] [Google Scholar]
  2. Beckett D., Uhlenbeck O. C. Ribonucleoprotein complexes of R17 coat protein and a translational operator analog. J Mol Biol. 1988 Dec 20;204(4):927–938. doi: 10.1016/0022-2836(88)90052-6. [DOI] [PubMed] [Google Scholar]
  3. Borer P. N., Lin Y., Wang S., Roggenbuck M. W., Gott J. M., Uhlenbeck O. C., Pelczer I. Proton NMR and structural features of a 24-nucleotide RNA hairpin. Biochemistry. 1995 May 16;34(19):6488–6503. doi: 10.1021/bi00019a030. [DOI] [PubMed] [Google Scholar]
  4. Carey J., Lowary P. T., Uhlenbeck O. C. Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site. Biochemistry. 1983 Sep 27;22(20):4723–4730. doi: 10.1021/bi00289a017. [DOI] [PubMed] [Google Scholar]
  5. Carpenter M. L., Kneale G. G. Analysis of DNA-protein interactions by intrinsic fluorescence. Methods Mol Biol. 1994;30:313–325. doi: 10.1385/0-89603-256-6:313. [DOI] [PubMed] [Google Scholar]
  6. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  7. Golmohammadi R., Valegård K., Fridborg K., Liljas L. The refined structure of bacteriophage MS2 at 2.8 A resolution. J Mol Biol. 1993 Dec 5;234(3):620–639. doi: 10.1006/jmbi.1993.1616. [DOI] [PubMed] [Google Scholar]
  8. Hill H. R., Stonehouse N. J., Fonseca S. A., Stockley P. G. Analysis of phage MS2 coat protein mutants expressed from a reconstituted phagemid reveals that proline 78 is essential for viral infectivity. J Mol Biol. 1997 Feb 14;266(1):1–7. doi: 10.1006/jmbi.1996.0786. [DOI] [PubMed] [Google Scholar]
  9. Hohn T. Role of RNA in the assembly process of bacteriophage fr. J Mol Biol. 1969 Jul 14;43(1):191–200. doi: 10.1016/0022-2836(69)90088-6. [DOI] [PubMed] [Google Scholar]
  10. Liljas L., Fridborg K., Valegård K., Bundule M., Pumpens P. Crystal structure of bacteriophage fr capsids at 3.5 A resolution. J Mol Biol. 1994 Dec 2;244(3):279–290. doi: 10.1006/jmbi.1994.1729. [DOI] [PubMed] [Google Scholar]
  11. Lowary P. T., Uhlenbeck O. C. An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res. 1987 Dec 23;15(24):10483–10493. doi: 10.1093/nar/15.24.10483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mastico R. A., Talbot S. J., Stockley P. G. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol. 1993 Apr;74(Pt 4):541–548. doi: 10.1099/0022-1317-74-4-541. [DOI] [PubMed] [Google Scholar]
  13. Murray J. B., Collier A. K., Arnold J. R. A general purification procedure for chemically synthesized oligoribonucleotides. Anal Biochem. 1994 Apr;218(1):177–184. doi: 10.1006/abio.1994.1157. [DOI] [PubMed] [Google Scholar]
  14. Ni C. Z., Syed R., Kodandapani R., Wickersham J., Peabody D. S., Ely K. R. Crystal structure of the MS2 coat protein dimer: implications for RNA binding and virus assembly. Structure. 1995 Mar 15;3(3):255–263. doi: 10.1016/S0969-2126(01)00156-3. [DOI] [PubMed] [Google Scholar]
  15. Peabody D. S., Lim F. Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic Acids Res. 1996 Jun 15;24(12):2352–2359. doi: 10.1093/nar/24.12.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peabody D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 1993 Feb;12(2):595–600. doi: 10.1002/j.1460-2075.1993.tb05691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Puglisi J. D., Tinoco I., Jr Absorbance melting curves of RNA. Methods Enzymol. 1989;180:304–325. doi: 10.1016/0076-6879(89)80108-9. [DOI] [PubMed] [Google Scholar]
  18. Schneider D., Tuerk C., Gold L. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J Mol Biol. 1992 Dec 5;228(3):862–869. doi: 10.1016/0022-2836(92)90870-p. [DOI] [PubMed] [Google Scholar]
  19. Stockley P. G., Stonehouse N. J., Murray J. B., Goodman S. T., Talbot S. J., Adams C. J., Liljas L., Valegård K. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res. 1995 Jul 11;23(13):2512–2518. doi: 10.1093/nar/23.13.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stockley P. G., Stonehouse N. J., Walton C., Walters D. A., Medina G., Macedo J. M., Hill H. R., Goodman S. T., Talbot S. J., Tewary H. K. Molecular mechanism of RNA-phage morphogenesis. Biochem Soc Trans. 1993 Aug;21(3):627–633. doi: 10.1042/bst0210627. [DOI] [PubMed] [Google Scholar]
  21. Stonehouse N. J., Stockley P. G. Effects of amino acid substitution on the thermal stability of MS2 capsids lacking genomic RNA. FEBS Lett. 1993 Nov 22;334(3):355–359. doi: 10.1016/0014-5793(93)80711-3. [DOI] [PubMed] [Google Scholar]
  22. Stonehouse N. J., Valegård K., Golmohammadi R., van den Worm S., Walton C., Stockley P. G., Liljas L. Crystal structures of MS2 capsids with mutations in the subunit FG loop. J Mol Biol. 1996 Feb 23;256(2):330–339. doi: 10.1006/jmbi.1996.0089. [DOI] [PubMed] [Google Scholar]
  23. Sugiyama T., Hebert R. R., Hartman K. A. Ribonucleoprotein complexes formed between bacteriophage MS2 RNA and MS2 protein in vitro. J Mol Biol. 1967 May 14;25(3):455–463. doi: 10.1016/0022-2836(67)90198-2. [DOI] [PubMed] [Google Scholar]
  24. Talbot S. J., Goodman S., Bates S. R., Fishwick C. W., Stockley P. G. Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex. Nucleic Acids Res. 1990 Jun 25;18(12):3521–3528. doi: 10.1093/nar/18.12.3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Talbot S. J., Medina G., Fishwick C. W., Haneef I., Stockley P. G. Hyperreactivity of adenines and conformational flexibility of a translational repression site. FEBS Lett. 1991 May 20;283(1):159–164. doi: 10.1016/0014-5793(91)80576-o. [DOI] [PubMed] [Google Scholar]
  26. Valegârd K., Murray J. B., Stonehouse N. J., van den Worm S., Stockley P. G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol. 1997 Aug 1;270(5):724–738. doi: 10.1006/jmbi.1997.1144. [DOI] [PubMed] [Google Scholar]
  27. Valegård K., Liljas L., Fridborg K., Unge T. The three-dimensional structure of the bacterial virus MS2. Nature. 1990 May 3;345(6270):36–41. doi: 10.1038/345036a0. [DOI] [PubMed] [Google Scholar]
  28. Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
  29. Witherell G. W., Gott J. M., Uhlenbeck O. C. Specific interaction between RNA phage coat proteins and RNA. Prog Nucleic Acid Res Mol Biol. 1991;40:185–220. doi: 10.1016/s0079-6603(08)60842-9. [DOI] [PubMed] [Google Scholar]
  30. van den Worm S. H., Stonehouse N. J., Valegârd K., Murray J. B., Walton C., Fridborg K., Stockley P. G., Liljas L. Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments. Nucleic Acids Res. 1998 Mar 1;26(5):1345–1351. doi: 10.1093/nar/26.5.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES