Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Oct;24(1):285–294. doi: 10.1016/S0006-3495(78)85377-6

Fast electron transfer processes in cytochrome C and related metalloproteins.

M G Simic, I A Taub
PMCID: PMC1473897  PMID: 213135

Abstract

Various free radicals formed on pulse radiolysis of aqueous solutions have been used to investigate the mechanisms of reduction of cytochrome(III) c by inter- and intramolecular electron transfer. The rapid formation of free radicals (t less than 1 mus) and their high reactivity with cytochrome (k approximately 10(8)(-5) x 10(10)M(-1)s(-1)) make such studies feasible. Reduction of cytochrome by free radicls is monitored by optical methods. Fast optical changes in the 1(-500)-mus region correspond to reduction of the iron center; whereas the slower changes in the 10(-500)-ms region are attributed to postreduction conformational changes. It has been concluded that the reduction path is mediated through the crevice and that no reduction intermediates are being formed.

Full text

PDF
285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Czerlinski G. H., Dar K. On the electron-transfer-coupled proton release of cytochrome c. Biochim Biophys Acta. 1971 Apr 6;234(1):57–61. doi: 10.1016/0005-2728(71)90129-0. [DOI] [PubMed] [Google Scholar]
  2. Dickerson R. E. X-ray studies of protein mechanisms. Annu Rev Biochem. 1972;41:815–842. doi: 10.1146/annurev.bi.41.070172.004123. [DOI] [PubMed] [Google Scholar]
  3. Greenwood C., Palmer G. Evidence for the existence of two functionally distinct forms cytochrome c manomer at alkaline pH. J Biol Chem. 1965 Sep;240(9):3660–3663. [PubMed] [Google Scholar]
  4. Holwerda R. A., Wherland S., Gray H. B. Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng. 1976;5:363–396. doi: 10.1146/annurev.bb.05.060176.002051. [DOI] [PubMed] [Google Scholar]
  5. Land E. J., Swallow A. J. One-electron reactions in biochemical systems as studied by pulse radiolysis. V. Cytochrome c. Arch Biochem Biophys. 1971 Jul;145(1):365–372. doi: 10.1016/0003-9861(71)90049-x. [DOI] [PubMed] [Google Scholar]
  6. Lichtin N. N., Shafferman A., Stein G. Reaction of hydrated electrons with ferricytochrome C. Science. 1973 Feb 16;179(4074):680–682. doi: 10.1126/science.179.4074.680. [DOI] [PubMed] [Google Scholar]
  7. Morgan L. O., Eakin R. T., Vergamimi P. J., Matwiyoff N. A. Carbon-13 nuclear magnetic resonance of heme carbonyls. Cytochrome c and carboxymethyl derivatives of cytochrome c. Biochemistry. 1976 May 18;15(10):2203–2207. doi: 10.1021/bi00655a027. [DOI] [PubMed] [Google Scholar]
  8. Salemme F. R. Structure and function of cytochromes c. Annu Rev Biochem. 1977;46:299–329. doi: 10.1146/annurev.bi.46.070177.001503. [DOI] [PubMed] [Google Scholar]
  9. Simic M. G., Taub I. A. Mechanisms of inter- and intra-molecular electron transfer in cytochromes. Faraday Discuss Chem Soc. 1977;(63):270–278. doi: 10.1039/dc9776300270. [DOI] [PubMed] [Google Scholar]
  10. Simic M. G., Taub I. A., Tocci J., Hurwitz P. A. Free radical reduction of ferricytochrome-C. Biochem Biophys Res Commun. 1975 Jan 20;62(2):161–167. doi: 10.1016/s0006-291x(75)80118-5. [DOI] [PubMed] [Google Scholar]
  11. Stellwagen E., Cass R. Alkaline isomerization of ferricytochrome C from Euglena gracilis. Biochem Biophys Res Commun. 1974 Sep 9;60(1):371–375. doi: 10.1016/0006-291x(74)90214-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES