Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Oct;24(1):35–42. doi: 10.1016/S0006-3495(78)85329-6

Bicarbonate-Chloride Exchange in Erythrocyte Suspensions

Stopped-Flow pH Electrode Measurements

Edward D Crandall, A L Obaid, R E Forster
PMCID: PMC1473905  PMID: 30493

Abstract

A pH-sensitive glass electrode was used in a temperature-controlled stopped-flow rapid reaction apparatus to determine rates of pH equilibration in red cell suspensions. The apparatus requires less than 2 ml of reactants. The electrode is insensitive to pressure and flow variations, and has a response time of < 5 ms. A 20% suspension of washed fresh human erythrocytes in saline at pH 7.7 containing NaHCO3 and extracellular carbonic anhydrase is mixed with an equal volume of 30 mM phosphate buffer at pH 6.7. Within a few milliseconds after mixing, extracellular HCO3- reacts with H+ to form CO2, which enters the red cells and rehydrates to form HCO3-, producing an electrochemical potential gradient for HCO3- from inside to outside the cells. HCO3- then leaves the cells in exchange for Cl-, and extracellular pH increases as the HCO3- flowing out of the cells reacts with H+. Flux of HCO3- is calculated from the dpH/dt during HCO3--Cl- exchange, and a velocity constant is computed from the flux and the calculated intracellular and extracellular [HCO3-]. The activation energy for the exchange process is 18.6 kcal/mol between 5°C and 17°C (transition temperature), and 11.4 kcal/mol from 17°C to 40°C. The activation energies and transition temperature are not significantly altered in the presence of a potent anion exchange inhibitor (SITS), although the fluxes are markedly decreased. These findings suggest that the rate-limiting step in red cell anion exchange changes at 17°C, either because of an alteration in the nature of the transport site or because of a transition in the physical state of membrane lipids affecting protein-lipid interactions.

Full text

PDF
35

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chow E. I., Crandall E. D., Forster R. E. Kinetics of bicarbonate-chloride exchange across the human red blood cell membrane. J Gen Physiol. 1976 Dec;68(6):633–652. doi: 10.1085/jgp.68.6.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crandall E. D., DeLong J. A pressure- and flow-insensitive reference electrode liquid junction. J Appl Physiol. 1976 Jul;41(1):125–128. doi: 10.1152/jappl.1976.41.1.125. [DOI] [PubMed] [Google Scholar]
  4. Crandall E. D., Klocke R. A., Forster R. E. Hydroxyl ion movements across the human erythrocyte membrane. Measurement of rapid pH changes in red cell suspensions. J Gen Physiol. 1971 Jun;57(6):664–683. doi: 10.1085/jgp.57.6.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dirken M. N., Mook H. W. The rate of gas exchange between blood cells and serum. J Physiol. 1931 Dec 17;73(4):349–360. doi: 10.1113/jphysiol.1931.sp002816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forster R. E., Crandall E. D. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol. 1975 Apr;38(4):710–718. doi: 10.1152/jappl.1975.38.4.710. [DOI] [PubMed] [Google Scholar]
  8. Gros G., Forster R. E., Lin L. The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus. J Biol Chem. 1976 Jul 25;251(14):4398–4407. [PubMed] [Google Scholar]
  9. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hemingway A., Hemingway C. J., Roughton F. J. The rate of the chloride shift of respiration studied with a rapid filtration method. Respir Physiol. 1970 Jul;10(1):1–9. doi: 10.1016/0034-5687(70)90021-6. [DOI] [PubMed] [Google Scholar]
  11. Jacobs M. H., Stewart D. R. THE ROLE OF CARBONIC ANHYDRASE IN CERTAIN IONIC EXCHANGES INVOLVING THE ERYTHROCYTE. J Gen Physiol. 1942 Mar 20;25(4):539–552. doi: 10.1085/jgp.25.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klocke R. A. Rate of bicarbonate-chloride exchange in human red cells at 37 degrees C. J Appl Physiol. 1976 May;40(5):707–714. doi: 10.1152/jappl.1976.40.5.707. [DOI] [PubMed] [Google Scholar]
  13. Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LUCKNER H. Die Temperaturabhängigkeit des Anionenaustausches roter Blutkörperchen. Pflugers Arch Gesamte Physiol Menschen Tiere. 1948;250(3):303–311. [PubMed] [Google Scholar]
  15. Lacko L., Wittke B., Geck P. The temperature dependence of the exchange transport of glucose in human erythrocytes. J Cell Physiol. 1973 Oct;82(2):213–218. doi: 10.1002/jcp.1040820209. [DOI] [PubMed] [Google Scholar]
  16. Lassen U. V., Pape L., Vestergaard-Bogind B., Bengtson O. Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture. J Membr Biol. 1974;18(2):125–144. doi: 10.1007/BF01870107. [DOI] [PubMed] [Google Scholar]
  17. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES