Abstract
Both Streptomyces lividans and Streptomyces avermitilis have the ability to site specifically modify their DNA, rendering it susceptible to in vitro Tris-dependent double-strand cleavage. We have cloned a 160 bp fragment containing the preferred modification site of plasmid pIJ101 and, employing an in vitro primer extension assay, determined that the modifications occur at guanine residues on either strand separated by 3 bp. These guanines are located within a 6 bp palindromic 'core' sequence. A cloned copy of a 35 bp region of the plasmid containing this core sequence was not recognized by the modifying activity in vivo. To further investigate the nature of the site specificity a set of deletion mutants of the 160 bp sequence were analysed. This revealed that a substantial portion of this sequence is essential for authentic modification. The essential region contains three 13 bp direct repeats, the central one containing the core sequence, while the left-hand and right-hand copies overlap two potential stem-loop structures. Deletion of either left- or right-hand repeat structures abolishes modification within the core sequence, although the left-hand deletion resulted in modification at a secondary site within the right-hand direct repeat. These data support a post-replicative mechanism of modification, underlined by the observation that the modifications are not detected in single-stranded plasmid replication intermediates.
Full Text
The Full Text of this article is available as a PDF (93.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnboim H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983;100:243–255. doi: 10.1016/0076-6879(83)00059-2. [DOI] [PubMed] [Google Scholar]
- Deng Z. X., Kieser T., Hopwood D. A. "Strong incompatibility" between derivatives of the Streptomyces multi-copy plasmid pIJ101. Mol Gen Genet. 1988 Oct;214(2):286–294. doi: 10.1007/BF00337723. [DOI] [PubMed] [Google Scholar]
- Dyson P. J., Evans M. pUCS75, a stable high-copy-number Streptomyces--Escherichia coli shuttle vector which facilitates subcloning from pUC plasmid and M13 phage vectors. Gene. 1996 May 24;171(1):71–73. doi: 10.1016/0378-1119(96)00064-9. [DOI] [PubMed] [Google Scholar]
- Dyson P., Schrempf H. Genetic instability and DNA amplification in Streptomyces lividans 66. J Bacteriol. 1987 Oct;169(10):4796–4803. doi: 10.1128/jb.169.10.4796-4803.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans M., Kaczmarek F. S., Stutzman-Engwall K., Dyson P. Characterization of a Streptomyces-lividans-type site-specific DNA modification system in the avermectin-producer Streptomyces avermitilis permits investigation of two novel giant linear plasmids, pSA1 and pSA2. Microbiology. 1994 Jun;140(Pt 6):1367–1371. doi: 10.1099/00221287-140-6-1367. [DOI] [PubMed] [Google Scholar]
- Karran P., Hjelmgren T., Lindahl T. Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature. 1982 Apr 22;296(5859):770–773. doi: 10.1038/296770a0. [DOI] [PubMed] [Google Scholar]
- Kendall K. J., Cohen S. N. Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol. 1988 Oct;170(10):4634–4651. doi: 10.1128/jb.170.10.4634-4651.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kieser T., Hopwood D. A., Wright H. M., Thompson C. J. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet. 1982;185(2):223–228. doi: 10.1007/BF00330791. [DOI] [PubMed] [Google Scholar]
- Kieser T., Melton R. E. Plasmid pIJ699, a multi-copy positive-selection vector for Streptomyces. Gene. 1988 May 15;65(1):83–91. doi: 10.1016/0378-1119(88)90419-2. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- McClelland M., Nelson M., Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1994 Sep;22(17):3640–3659. doi: 10.1093/nar/22.17.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikolskaya I. I., Lopatina N. G., Debov S. S. Methylated guanine derivative as a minor base in the DNA of phage DDVI Shigella disenteriae. Biochim Biophys Acta. 1976 Jun 18;435(2):206–210. doi: 10.1016/0005-2787(76)90251-3. [DOI] [PubMed] [Google Scholar]
- Pigac J., Vujaklija D., Toman Z., Gamulin V., Schrempf H. Structural instability of a bifunctional plasmid pZG1 and single-stranded DNA formation in Streptomyces. Plasmid. 1988 May;19(3):222–230. doi: 10.1016/0147-619x(88)90040-6. [DOI] [PubMed] [Google Scholar]
- Ray T., Mills A., Dyson P. Tris-dependent oxidative DNA strand scission during electrophoresis. Electrophoresis. 1995 Jun;16(6):888–894. doi: 10.1002/elps.11501601149. [DOI] [PubMed] [Google Scholar]
- Ray T., Weaden J., Dyson P. Tris-dependent site-specific cleavage of Streptomyces lividans DNA. FEMS Microbiol Lett. 1992 Sep 15;75(2-3):247–252. doi: 10.1016/0378-1097(92)90412-h. [DOI] [PubMed] [Google Scholar]
- Rüther U., Koenen M., Otto K., Müller-Hill B. pUR222, a vector for cloning and rapid chemical sequencing of DNA. Nucleic Acids Res. 1981 Aug 25;9(16):4087–4098. doi: 10.1093/nar/9.16.4087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith B., Dyson P. Inducible transposition in Streptomyces lividans of insertion sequence IS6100 from Mycobacterium fortuitum. Mol Microbiol. 1995 Dec;18(5):933–941. doi: 10.1111/j.1365-2958.1995.18050933.x. [DOI] [PubMed] [Google Scholar]
- Spratt B. G., Hedge P. J., te Heesen S., Edelman A., Broome-Smith J. K. Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene. 1986;41(2-3):337–342. doi: 10.1016/0378-1119(86)90117-4. [DOI] [PubMed] [Google Scholar]
- Warren R. A. Modified bases in bacteriophage DNAs. Annu Rev Microbiol. 1980;34:137–158. doi: 10.1146/annurev.mi.34.100180.001033. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Zaman S., Radnedge L., Richards H., Ward J. M. Analysis of the site for second-strand initiation during replication of the Streptomyces plasmid pIJ101. J Gen Microbiol. 1993 Apr;139(4):669–676. doi: 10.1099/00221287-139-4-669. [DOI] [PubMed] [Google Scholar]
- Zhou X., Deng Z., Firmin J. L., Hopwood D. A., Kieser T. Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res. 1988 May 25;16(10):4341–4352. doi: 10.1093/nar/16.10.4341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou X., Deng Z., Hopwood D. A., Kieser T. Streptomyces lividans 66 contains a gene for phage resistance which is similar to the phage lambda ea59 endonuclease gene. Mol Microbiol. 1994 Jun;12(5):789–797. doi: 10.1111/j.1365-2958.1994.tb01065.x. [DOI] [PubMed] [Google Scholar]
