Abstract
Three analogs of unmodified yeast tRNAPhe, each possessing a single disulfide cross-link, have been designed and synthesized. One cross-link is between G1 and C72 in the amino acid acceptor stem, a second cross-link is in the central D region of yeast tRNAPhe between C11 and C25 and the third cross-link bridges U16 and C60 at the D loop/T loop interface. Air oxidation to form the cross-links is quantitative and analysis of the cross-linked products by native and denaturing PAGE, RNase T1 mapping, Pb(II) cleavage, UV cross-linking and thermal denaturation demonstrates that the disulfide bridges do not alter folding of the modified tRNAs relative to the parent sequence. The finding that cross-link formation between thiol-derivatized residues correlates with the position of these groups in the crystal structure of native yeast tRNAPhe and that the modifications do not significantly perturb native structure suggests that this methodology should be applicable to the study of RNA structure, conformational dynamics and folding pathways.
Full Text
The Full Text of this article is available as a PDF (178.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allerson C. R., Verdine G. L. Synthesis and biochemical evaluation of RNA containing an intrahelical disulfide crosslink. Chem Biol. 1995 Oct;2(10):667–675. doi: 10.1016/1074-5521(95)90030-6. [DOI] [PubMed] [Google Scholar]
- Behlen L. S., Sampson J. R., DiRenzo A. B., Uhlenbeck O. C. Lead-catalyzed cleavage of yeast tRNAPhe mutants. Biochemistry. 1990 Mar 13;29(10):2515–2523. doi: 10.1021/bi00462a013. [DOI] [PubMed] [Google Scholar]
- Behlen L. S., Sampson J. R., Uhlenbeck O. C. An ultraviolet light-induced crosslink in yeast tRNA(Phe). Nucleic Acids Res. 1992 Aug 11;20(15):4055–4059. doi: 10.1093/nar/20.15.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branch A. D., Benenfeld B. J., Paul C. P., Robertson H. D. Analysis of ultraviolet-induced RNA-RNA cross-links: a means for probing RNA structure-function relationships. Methods Enzymol. 1989;180:418–442. doi: 10.1016/0076-6879(89)80115-6. [DOI] [PubMed] [Google Scholar]
- Brown R. S., Dewan J. C., Klug A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry. 1985 Aug 27;24(18):4785–4801. doi: 10.1021/bi00339a012. [DOI] [PubMed] [Google Scholar]
- Cain R. J., Glick G. D. The effect of cross-links on the conformational dynamics of duplex DNA. Nucleic Acids Res. 1997 Feb 15;25(4):836–842. doi: 10.1093/nar/25.4.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cain R. J., Zuiderweg E. R., Glick G. D. Solution structure of a DNA hairpin and its disulfide cross-linked analog. Nucleic Acids Res. 1995 Jun 25;23(12):2153–2160. doi: 10.1093/nar/23.12.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cech T. R. Catalytic RNA: structure and mechanism. Biochem Soc Trans. 1993 May;21(2):229–234. doi: 10.1042/bst0210229. [DOI] [PubMed] [Google Scholar]
- Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
- Coutts S. M., Riesner D., Römer R., Rabl C. R., Maass G. Kinetics of conformational changes in tRNA Phe (yeast) as studied by the fluorescence of the Y-base and of formycin substituted for the 3'-terminal adenine. Biophys Chem. 1975 Oct;3(4):275–289. doi: 10.1016/0301-4622(75)80020-2. [DOI] [PubMed] [Google Scholar]
- Doudna J. A., Cate J. H. RNA structure: crystal clear? Curr Opin Struct Biol. 1997 Jun;7(3):310–316. doi: 10.1016/s0959-440x(97)80045-0. [DOI] [PubMed] [Google Scholar]
- Draper D. E. Strategies for RNA folding. Trends Biochem Sci. 1996 Apr;21(4):145–149. [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falke J. J., Koshland D. E., Jr Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science. 1987 Sep 25;237(4822):1596–1600. doi: 10.1126/science.2820061. [DOI] [PubMed] [Google Scholar]
- Gasparutto D., Livache T., Bazin H., Duplaa A. M., Guy A., Khorlin A., Molko D., Roget A., Téoule R. Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucleic Acids Res. 1992 Oct 11;20(19):5159–5166. doi: 10.1093/nar/20.19.5159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall K. B., Sampson J. R. Structural investigation of the in vitro transcript of the yeast tRNA(phe) precursor by NMR and nuclease mapping. Nucleic Acids Res. 1990 Dec 11;18(23):7041–7047. doi: 10.1093/nar/18.23.7041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han H., Dervan P. B. Visualization of RNA tertiary structure by RNA-EDTA.Fe(II) autocleavage: analysis of tRNA(Phe) with uridine-EDTA.Fe(II) at position 47. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4955–4959. doi: 10.1073/pnas.91.11.4955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris M. E., Nolan J. M., Malhotra A., Brown J. W., Harvey S. C., Pace N. R. Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J. 1994 Sep 1;13(17):3953–3963. doi: 10.1002/j.1460-2075.1994.tb06711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogilvie K. K., Usman N., Nicoghosian K., Cedergren R. J. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5764–5768. doi: 10.1073/pnas.85.16.5764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parvari R., Pecht I., Soreq H. A microfluorometric assay for cholinesterases, suitable for multiple kinetic determinations of picomoles of released thiocholine. Anal Biochem. 1983 Sep;133(2):450–456. doi: 10.1016/0003-2697(83)90107-0. [DOI] [PubMed] [Google Scholar]
- Pratt C. B., Meyer W. H., Rao B. N., Pappo A. S., Fleming I. D., Luo X., Cain A., Kaste S. C., Shearer P. D., Jenkins J. J., 3rd Comparison of primary osteosarcoma of flat bones with secondary osteosarcoma of any site. Cancer. 1997 Sep 15;80(6):1171–1177. [PubMed] [Google Scholar]
- Privalov P. L., Filimonov V. V. Thermodynamic analysis of transfer RNA unfolding. J Mol Biol. 1978 Jul 15;122(4):447–464. doi: 10.1016/0022-2836(78)90421-7. [DOI] [PubMed] [Google Scholar]
- Rigler R., Wintermeyer W. Dynamics of tRNA. Annu Rev Biophys Bioeng. 1983;12:475–505. doi: 10.1146/annurev.bb.12.060183.002355. [DOI] [PubMed] [Google Scholar]
- Scaringe S. A., Francklyn C., Usman N. Chemical synthesis of biologically active oligoribonucleotides using beta-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Res. 1990 Sep 25;18(18):5433–5441. doi: 10.1093/nar/18.18.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigurdsson S. T., Eckstein F. Isolation of oligoribonucleotides containing intramolecular cross-links. Anal Biochem. 1996 Mar 15;235(2):241–242. doi: 10.1006/abio.1996.0120. [DOI] [PubMed] [Google Scholar]
- Sigurdsson S. T., Tuschl T., Eckstein F. Probing RNA tertiary structure: interhelical crosslinking of the hammerhead ribozyme. RNA. 1995 Aug;1(6):575–583. [PMC free article] [PubMed] [Google Scholar]
- Völker J., Osborne S. E., Glick G. D., Breslauer K. J. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix. Biochemistry. 1997 Jan 28;36(4):756–767. doi: 10.1021/bi962271l. [DOI] [PubMed] [Google Scholar]
- Wrede P., Wurst R., Vournakis J., Rich A. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. J Biol Chem. 1979 Oct 10;254(19):9608–9616. [PubMed] [Google Scholar]
- Wünsch E., Moroder L., Romani S. 1-(tert-butylthio)-1,2-hydrazinedicarboxylic acid derivatives. New reagents for the introduction of the S-tert-butylthio group into cysteine and cysteine derivatives. Hoppe Seylers Z Physiol Chem. 1982 Dec;363(12):1461–1464. doi: 10.1515/bchm2.1982.363.2.1461. [DOI] [PubMed] [Google Scholar]