Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 1;26(5):1144–1149. doi: 10.1093/nar/26.5.1144

Comparative mutagenicities of N6-methoxy-2,6-diaminopurine and N6-methoxyaminopurine 2'-deoxyribonucleosides and their 5'-triphosphates.

F Hill 1, D M Williams 1, D Loakes 1, D M Brown 1
PMCID: PMC147402  PMID: 9469819

Abstract

The structure of the deoxyribonucleoside derived from N 6-methoxy-2, 6-diaminopurine (dK) was examined by NMR. The methoxyamino residue was found predominantly in the imino rather than the amino tautomer (ratio: 9:1 in DMSO). The nucleoside proved to be a potent transition mutagen in Escherichia coli , in contrast to the closely related nucleoside derived from the analogue N6-methoxyaminopurine (dZ), which was only weakly mutagenic. The 5'-triphosphate derivatives, dKTP and dZTP, were synthesized; Taq polymerase incorporated dKTP opposite both T and, less well, opposite dC in template DNA. Both analogue triphosphates produced transition mutations when added to PCR reactions. In each case, there was a large excess of AT-->GC compared to GC-->AT mutations (ratios were 15:1 for dKTP and 10:1 for dZTP). Polymerase extension times in each cycle had to be extended, consistent with a decreased rate of DNA synthesis in the presence of the analogues. This and the mutagenic ratios are discussed in terms of syn-anti inversion of the methoxyl group.

Full Text

The Full Text of this article is available as a PDF (261.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. M., Hewlins M. J., Schell P. The tautomeric state of N(4)-hydroxy- and of N(4)-amino-cytosine derivatives. J Chem Soc Perkin 1. 1968;15:1925–1929. doi: 10.1039/j39680001925. [DOI] [PubMed] [Google Scholar]
  2. Brown D. M., Lin P. K. Synthesis and duplex stability of oligonucleotides containing adenine-guanine analogues. Carbohydr Res. 1991 Sep 2;216:129–139. doi: 10.1016/0008-6215(92)84156-m. [DOI] [PubMed] [Google Scholar]
  3. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  4. Cupples C. G., Miller J. H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5345–5349. doi: 10.1073/pnas.86.14.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frey M. W., Sowers L. C., Millar D. P., Benkovic S. J. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Biochemistry. 1995 Jul 18;34(28):9185–9192. doi: 10.1021/bi00028a031. [DOI] [PubMed] [Google Scholar]
  6. Gdaniec Z., Ban B., Sowers L. C., Fazakerley G. V. Methoxyamine-induced mutagenesis of nucleic acids. A proton NMR study of oligonucleotides containing N4-methoxycytosine paired with adenine or guanine. Eur J Biochem. 1996 Dec 1;242(2):271–279. doi: 10.1111/j.1432-1033.1996.0271r.x. [DOI] [PubMed] [Google Scholar]
  7. Goodman M. F. DNA models. Mutations caught in the act. Nature. 1995 Nov 16;378(6554):237–238. doi: 10.1038/378237a0. [DOI] [PubMed] [Google Scholar]
  8. Janion C., Myszkowska K. Mutagenic and inhibitory properties of some new purine analogs on Salmonella typhimurium TA1530. Mutat Res. 1981 May;91(3):193–197. doi: 10.1016/0165-7992(81)90030-0. [DOI] [PubMed] [Google Scholar]
  9. Kierdaszuk B., Stolarski R., Shugar D. Hydroxylamine and methoxyamine mutagenesis: tautomeric equilibrium of the promutagenic, N6-methoxyadenosine in solvents of different polarities. Acta Biochim Pol. 1984;31(1):49–64. [PubMed] [Google Scholar]
  10. Kraemer K. H., Seidman M. M. Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutat Res. 1989 Mar-May;220(2-3):61–72. doi: 10.1016/0165-1110(89)90011-0. [DOI] [PubMed] [Google Scholar]
  11. Lin P. K., Brown D. M. Synthesis of oligodeoxyribonucleotides containing degenerate bases and their use as primers in the polymerase chain reaction. Nucleic Acids Res. 1992 Oct 11;20(19):5149–5152. doi: 10.1093/nar/20.19.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishio H., Ono A., Matsuda A., Ueda T. The synthesis and properties of oligodeoxyribonucleotides containing N6-methoxyadenine. Nucleic Acids Res. 1992 Feb 25;20(4):777–782. doi: 10.1093/nar/20.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singer B., Kuśmierek J. T. Chemical mutagenesis. Annu Rev Biochem. 1982;51:655–693. doi: 10.1146/annurev.bi.51.070182.003255. [DOI] [PubMed] [Google Scholar]
  15. Teitelbaum H., Englander S. W. Open states in native polynucleotides. II. Hydrogen-exchange study of cytosine-containing double helices. J Mol Biol. 1975 Feb 15;92(1):79–92. doi: 10.1016/0022-2836(75)90092-3. [DOI] [PubMed] [Google Scholar]
  16. Topal M. D., Fresco J. R. Complementary base pairing and the origin of substitution mutations. Nature. 1976 Sep 23;263(5575):285–289. doi: 10.1038/263285a0. [DOI] [PubMed] [Google Scholar]
  17. WATSON J. D., CRICK F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953 May 30;171(4361):964–967. doi: 10.1038/171964b0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES